The 4th Homotopy Group of the 3-Sphere in Cubical Agda

Axel Ljungström, Anders Mörtberg

Types 2022

WHAT?

- A computer formalisation of (most of) Guillaume Brunerie's PhD thesis in Cubical Agda
- Synthetic proof (in HoTT) of $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$

Guillaume Brunerie

WHY?

- Brunerie's theorem is to this date one of the most advanced pieces of mathematics developed in HoTT
- Contains small 'gaps' which have made the theorem considered 'unformalisable'

Guillaume Brunerie

HOW?

 Cubical Agda and some trickery (streamlined proofs, new definitions, etc.)

HOW?

- Cubical Agda and some trickery (streamlined proofs, new definitions, etc.)
- Let's start with a brief overview of Brunerie's proof

Chapter 1–3

• Brunerie constructs a map $igoplus \mathbb{S}^3 o \mathbb{S}^2$ (the *Brunerie Map*).

•

lives in $\pi_3(\mathbb{S}^2)$

- There is an equivalence $e: \pi_3(\mathbb{S}^2) \cong \mathbb{Z}$.
- Define $\beta : \mathbb{Z}$ by $\beta = e$
- Main theorem: We have $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/\beta\mathbb{Z}$.

Chapters 1–3

What's needed?

- The James Construction
 - we used a shortcut, but there's also a full formalisation by KANG Rongji
- The Hopf fibration
- The Blakers-Massey Theorem
 - full formalisation by KANG Rongji
- Whitehead products

Not easy, but doable!

What's left?

• So, all we need to prove now is $\beta=\pm2$. Should be easy, right?

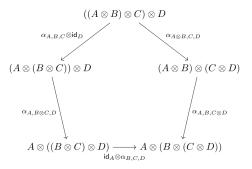
What's left?

• So, all we need to prove now is $\beta=\pm2$. Should be easy, right?

It's hard!

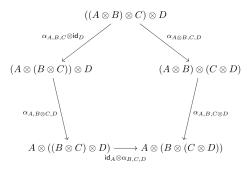
In order to prove $\beta=\pm 2$, Brunerie introduces a bunch of things:

• Symmetric monoidal structure of smash products



In order to prove $\beta=\pm2$, Brunerie introduces a bunch of things:

- Symmetric monoidal structure of smash products
 - \implies The graded ring structure of the *cup product* $\smile: H^i(X) \times H^j(X) \to H^{i+j}(X)$



• The Mayer-Vietoris sequence

$$\begin{split} \tilde{H}^{n+1}(D) & \stackrel{i}{\longrightarrow} \tilde{H}^{n+1}(A) \times H^{n+1}(B) & \stackrel{\Delta}{\longrightarrow} H^{n+1}(C) \\ & \stackrel{i}{\longleftarrow} \tilde{H}^{n}(D) & \stackrel{i}{\longrightarrow} \tilde{H}^{n}(A) \times H^{n}(B) & \stackrel{\Delta}{\longrightarrow} H^{n}(C) \\ & \stackrel{d}{\longleftarrow} \tilde{H}^{n-1}(D) & \stackrel{i}{\longrightarrow} \tilde{H}^{n-1}(A) \times H^{n-1}(B) & \stackrel{\Delta}{\longrightarrow} H^{n-1}(C) \end{split}$$

The Gysin Sequence

$$\mathbb{S}^{n-1} \longrightarrow E \stackrel{p}{\longrightarrow} B$$

$$\dots \longrightarrow H^{i-1}(E) \stackrel{\smile e}{\longrightarrow} H^{i}(B) \stackrel{p^{*}}{\longrightarrow} H^{i}(E) \longrightarrow \dots$$

• The Hopf Invariant homomorphism

Definition 5.4.1. Given a pointed map $f: \mathbb{S}^{2n-1} \to \mathbb{S}^n$, we define

$$C_f := \mathbf{1} \sqcup^{\mathbb{S}^{2n-1}} \mathbb{S}^n,$$

$$\alpha_f := (i^*)^{-1}(\mathbf{c}_n) : H^n(C_f),$$

$$\beta_f := p^*(\mathbf{c}_{2n}) : H^{2n}(C_f),$$

Definition 5.4.2. The *Hopf invariant* of a pointed map $f: \mathbb{S}^{2n-1} \to \mathbb{S}^n$ is the integer $H(f): \mathbb{Z}$ such that

$$\alpha_f^2 = H(f)\beta_f,$$

where α_f^2 is $\alpha_f \smile \alpha_f$.

• The Iterated Hopf Construction

$$\begin{array}{c|c} A \xleftarrow{\operatorname{fst}} & A \times (A \sqcup^{A \times A} A) \xrightarrow{(a,x) \mapsto \nu_a'(x)} \sum_{x: \Sigma A} H(x) \\ \downarrow^{\operatorname{id}} & \downarrow^{\operatorname{(}a,x) \mapsto (a,\nu_a'(x))} & \downarrow^{\operatorname{id}} \\ A \xleftarrow{\operatorname{fst}} & A \times \sum_{x: \Sigma A} H(x) \xrightarrow{\operatorname{snd}} & \sum_{x: \Sigma A} H(x) \end{array}$$

All in all:

- Symmetric monoidal structure of smash products
 - \implies The graded ring structure of the cup product $\smile: H^i(X) \times H^j(X) \to H^{i+j}(X)$
- The Mayer-Vietoris sequence
- The Gysin Sequence
- The Hopf Invariant homomorphism
- The Iterated Hopf Construction

All in all:

- Symmetric monoidal structure of smash products
 - \implies The graded ring structure of the cup product $\smile: H^i(X) \times H^j(X) \to H^{i+j}(X)$
- The Mayer-Vietoris sequence
- The Gysin Sequence
- The Hopf Invariant homomorphism
- The Iterated Hopf Construction

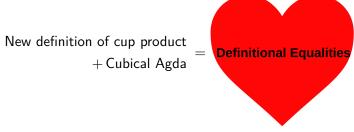
Our formalisation:

- Symmetric monoidal structure of smash products
 - The graded ring structure of the cup product $\smile: H^i(X) \times H^j(X) \to H^{i+j}(X)$
- The Mayer-Vietoris sequence
- The Gysin Sequence
- The Hopf Invariant homomorphism
- The Iterated Hopf Construction

Our formalisation:

- Symmetric monoidal structure of smash products
 - The graded ring structure of the cup product $\smile: H^i(X) \times H^j(X) \to H^{i+j}(X)$
- The Mayer-Vietoris sequence
- The Gysin Sequence
- The Hopf Invariant homomorphism
- The Iterated Hopf Construction

- Cubical Agda is excellent because it is entirely constructive
 - Things compute



- Removes a lot of 'bureaucracy' from certain proofs
- The rest of the formalisation: challenging but straightforward

- Cubical Agda is excellent because it is entirely constructive
 - Things compute

- Removes a lot of 'bureaucracy' from certain proofs
- The rest of the formalisation: challenging but straightforward
- Many, many lines of code later, we have it:

$$\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$$

- In fact, there is a new proof completely bypassing Chapters 4-6.
- ullet Idea: Show $eta=\pm 2$ directly by tracing the equivalence $\pi_3(\mathbb{S}^2)\cong \mathbb{Z}$

- In fact, there is a new proof completely bypassing Chapters 4-6.
- Idea: Show $\beta=\pm 2$ directly by tracing the equivalence $\pi_3(\mathbb{S}^2)\cong \mathbb{Z}$
- Very direct. Easy to formalise (not dependent on Cubical methods).

- In fact, there is a new proof completely bypassing Chapters 4-6.
- Idea: Show $\beta=\pm 2$ directly by tracing the equivalence $\pi_3(\mathbb{S}^2)\cong \mathbb{Z}$
- Very direct. Easy to formalise (not dependent on Cubical methods).
- Also gives a proof (partly) by normalisation we can normalise a version of β in Cubical Agda and get our computer to spit out -2

- In fact, there is a new proof completely bypassing Chapters 4-6.
- Idea: Show $\beta=\pm 2$ directly by tracing the equivalence $\pi_3(\mathbb{S}^2)\cong \mathbb{Z}$
- Very direct. Easy to formalise (not dependent on Cubical methods).
- Also gives a proof (partly) by normalisation we can normalise a version of β in Cubical Agda and get our computer to spit out -2
- But that's a topic for a future talk...

- In fact, there is a new proof completely bypassing Chapters 4-6.
- Idea: Show $\beta=\pm 2$ directly by tracing the equivalence $\pi_3(\mathbb{S}^2)\cong \mathbb{Z}$
- Very direct. Easy to formalise (not dependent on Cubical methods).
- Also gives a proof (partly) by normalisation we can normalise a version of β in Cubical Agda and get our computer to spit out -2
- But that's a topic for a future talk...
- See my recent post on the HoTT blog for more details.

Homotopy Type Theory

Summary

So we have 3 formalisations:

- A 'full' formalisation of Brunerie's thesis (modulo some trickery)
 - ▶ github.com/agda/cubical/blob/master/Cubical/Homotopy/Group/Pi4S3/Summary.agda
- A direct proof, replacing chapters 4–6
 - github.com/agda/cubical/blob/master/Cubical/Homotopy/Group/Pi4S3/DirectProof.agda
- A related proof by normalisation, replacing chapters 4–6

Summary

So we have 3 formalisations:

- A 'full' formalisation of Brunerie's thesis (modulo some trickery)
 - pithub.com/agda/cubical/blob/master/Cubical/Homotopy/Group/Pi4S3/Summary.agda
- A direct proof, replacing chapters 4–6
 - ▶ github.com/agda/cubical/blob/master/Cubical/Homotopy/Group/Pi4S3/DirectProof.agda
- A related proof by normalisation, replacing chapters 4–6

Questions?