
Cohomology Computations in Cubical Agda

Axel Ljungström

Introduction

• A fair bit of cohomology theory been done in Homotopy Type
Theory (HoTT):
• Licata & Finster (2014)
• Cavallo (2015)
• Brunerie (2016)
• Buchholtz & Favonia (2018)
• van Doorn (2018)

• We have been working on integer cohomology in Cubical Agda
• The goal is not only to be able to prove the results from the

previously mentioned papers, but also to be able to use our
theory for computations. This requires some tweaking of
previous work.

Definitions

Definition 1 (Suspensions)
Let A be a type. We define the suspension of A, denoted ΣA, as a
HIT with the following constructors
• north : ΣA

• south : ΣA

• merid : A→ north ≡ south
We always take ΣA to be pointed by north.

Definition 2 (Spheres)
We define S1 with the usual base/loop constructors. For n ≥ 1, we
define Sn+1 = ΣSn

Definitions

Definition 3 (Eilenberg-MacLane Spaces)
For n ≥ 0, we define Kn, the n-th Eilenberg-MacLane space, by
• K0 = Z
• Kn = ‖Sn‖n, n ≥ 1.

We take Kn to be pointed by 0k : Kn, defined by
• 0k = 0, when n = 0
• 0k =|∗Sn |, otherwise.

Definition 4
For any type A, we define Hn(A) = ‖A→ Kn‖0. This is pointed by
0h = λ x . 0k .

Definitions

Definition 5 (Connectedness)
A type A is said to be n-connected if ‖A‖n is contractible. If a
function f : A→ B has n-connected fibres, we say that f is an
n-connected function.

Notation: I’ll be using ≡ for path equality and congf for
apf : x ≡ y → f (x) ≡ f (y), following the notation in the Cubical
library. When f is a binary function, we get a binary cong:
cong2

f : (x ≡ y)× (z ≡ w)→ f (x , z) ≡ f (y ,w).

Group structure

• We get the group structure on Hn(A) from defining one on Kn.
• In e.g. Brunerie (2016), addition in Kn is given by an

isomorphism Kn ' ΩKn+1, so that Kn inherits path
composition.
• This forces us to use the Freudenthal Suspension Theorem,

which does not compute well.
• We still want Kn ' ΩKn+1 for most cohomology group

characterisations
• Our approach: define the group structure first and get
Kn ' ΩKn+1 a corollary.
• We want our cohomology theory to satisfy two things:

• It should not rely on any theory about connected
types/functions

• It should have useful definitional equalities, e.g. 0k + 0k ≡ 0k .

No Connectedness

• Most theory about connectedness makes (repeated) use of the
following lemma.

Theorem 6
For any n ≥ −2 and x , y : X , we have

‖x ≡ y‖n '
(
|x | ≡‖X‖n+1

|y |
)

• The inverse function of this equivalence is given by a
combination of truncation elimination and a transport over a
path constructed by univalence.
• Wherever this theorem pops up, we seem to run into problems

with computations!
• This prevents us from using virtually any theory about

connected maps and types.

Group Structure

• The addition on Kn, which we denote by

+k : Kn × Kn → Kn

is given by the “Wedge Connectivity Lemma” from the HoTT
book (this is similar to what is done in e.g. Licata & Finster
(2014)).
• The lemma, in its original form, essentially tells us that maps

from wedge sums induce (well-behaved) maps from products
under some connectedness assumptions.
• Problem: uses connectedness. We rectify this by only proving

the special case of the theorem when the wedge sum

Wedge Connectivity Lemma

Lemma 7
Let n,m ≥ 1 and suppose we have a fibration
P : Sn × Sm → (n + m − 2)−Type together with functions

fl : (x : Sn)→ P(x , ∗Sm)

fr : (y : Sm)→ P(∗Sn,y)

together with a path p : fl(∗Sn) ≡ fr (∗Sm). Then we there is a total
function F : (x : Sn × Sm)→ P(x) equipped with homotopies

left : (x : Sn)→ fl(x) ≡ F (x , ∗Sm)

right : (x : Sm)→ fr (x) ≡ F (∗Sn , x)

such that p ≡ left(∗Sn) · right(∗Sm)−1.

Wedge Connectivity Lemma

• When stated for spheres, we can also make either the left- or
the right homotopy hold by refl.
• Proof idea: Construct F , left and right mutually while

inducting on n and m.
• F is constructed by pattern matching on Sn and Sm. This way,

we can force either one of the homotopies to hold definitionally.
• For higher path constructors, we can use the inductive

hypothesis to give the required fillers.
• Remark: This direct proof should be easy to generalise for

Eilenberg-MacLane spaces over arbitrary groups, as presented
in Licata & Finster (2014).

Addition

• We may now use this to define our addition
+k : Kn × Kn → Kn

• For n = 0, we choose regular integer addition.

• For n ≥ 1, it suffices to give a map Sn × Sn → Kn︸︷︷︸
‖Sn‖n

• For n = 1, the addition is defined by

(base, x) 7→|x |
(loop i , base) 7→| loop i |

The final square for (loop i , loop j) is essentially
congλ x . |x |(loop · loop).

Addition

• We may now use this to define our addition
+k : Kn × Kn → Kn

• For n = 0, we choose regular integer addition.
• For n ≥ 1, it suffices to give a map Sn × Sn → Kn︸︷︷︸

‖Sn‖n

• For n = 1, the addition is defined by

(base, x) 7→|x |
(loop i , base) 7→| loop i |

The final square for (loop i , loop j) is essentially
congλ x . |x |(loop · loop).

Addition

• We may now use this to define our addition
+k : Kn × Kn → Kn

• For n = 0, we choose regular integer addition.
• For n ≥ 1, it suffices to give a map Sn × Sn → Kn︸︷︷︸

‖Sn‖n
• For n = 1, the addition is defined by

(base, x) 7→|x |
(loop i , base) 7→| loop i |

The final square for (loop i , loop j) is essentially
congλ x . |x |(loop · loop).

Addition

• For n ≥ 2, wedge connectivity will apply. So we only need two
maps

fl , fr : Sn → Kn

and a proof p : fl(north) ≡ fr (north). We choose the inclusion
λ x . |x | for both maps and let p = refl.

Monoid laws

• The monoid laws and commutativity for +k are now very easy
to prove using wedge connectivity.
• All of them will reduce to refl or something very similar at 0k

(this is good – they often occur instantiated at 0k in
computations).
• In particular, lUnitk(0k) ≡ rUnitk(0k) holds by refl.
• Hence, +k is an h-structure on Kn. These are unique (this

also follows by wedge connectivity), so we can be convinced
that our definition of +k is correct.

Inversion

• Inversion is easy to define: for any x : Kn, the map
fx = λy . x +k y is an equivalence. Since we are proving a
proposition, we only need to do it for x = 0k , in which case it
reduces to the identity function.
• However, there is a more direct definition. I’ll give it for n ≥ 2

(it’s similar for n = 1). −k |x | is defined by induction on x

−k |north | =|north |
−k |south | =|north |

−k |merid a i | =|((merid north) · (merid a)−1) i |

Properties

• The following lemma gives us short proofs of the cancellation
laws for −k and the commutativity of path composition in
ΩKn.

Lemma 8
For any p, q : ΩKn, we have cong2

+k
(p, q) ≡ p · q.

• Note that this would not be well-typed if 0k +k 0k did not
reduce definitionally to 0k .
• This will reduce the cancellation laws of −k to the cancellation

laws of path composition...
• ... and the commutativity of path composition in ΩKn to the

commutativity of +k .

Kn ' ΩKn+1

• Now that the set up is done, it is easy to prove that
Kn ' ΩKn+1 by a very standard encode decode proof.
• We omit the proof, but here’s the definition of the code

fibration

Code : Kn+1 → n-Type
Code(|north |) = Kn

Code(|south |) = Kn

Code(|merid a i |) = ua(λ x . |a | +kx) i

• The proof is very similar to that of ΩS1 ' Z after this.

Cohomology groups

• Hn(A) = ‖A→ Kn‖0 inherits all its structure from Kn. We
have given characterised all cohomology groups of...
• Sn
• the torus
• RP2

• the Klein bottle.
• Arbitrary wedge sums, i.e. Hn(A ∨ B) ∼= Hn(A)× Hn(B) for

n ≥ 1.

• By “characterise”, I mean that we have constructed group
ismorphisms Hn(A) ∼= G where G is some well-known group
(e.g. Z).

Cohomology

• All isomorphisms have been constructed by giving explicitly
constructed functions in each direction and proving that they
cancel out, instead of using more general constructions (e.g.
the Mayer-Vietoris sequence or similar).
• For instance, the isomorphism H1(S1) ∼= Z is given by

H1(S1) =
∥∥S1 → K1

∥∥
0 '

∥∥∥∥∥∥
∑
x :K1

x ≡ x

∥∥∥∥∥∥
0

' ΩK1 ' Z

• The first step looks the same for all cohomology groups we
have characterised. After that, it is usually relatively clear
what the rest of the function should be.

Computations

• Given a characterisation ϕ : Hn(A) ∼= G , we have run two
tests in Cubical Agda:
• Test 1: check whether ϕ(ϕ−1(x)) reduces to x (assuming G is

a closed type)
• Test 2: check whether ϕ(ϕ−1(x) +h ϕ

−1(y)) reduces to
x +G y

Computations

Type A Cohomology Group G Test 1 Test 2

S1 H1 Z 3 3

S2 H2 Z 3 71

S3 H3 Z 3 7

T2 H1 Z× Z 3 3

H2 Z 3 71

S2 ∨ S1 ∨ S1 H1 Z× Z 3 3

H2 Z 3 3

K2 H1 Z 3 3

H2 Z/2Z 7 7

RP2 H2 Z/2Z 7 7

1Some very trivial tests like ϕ(ϕ−1(0) + ϕ−1(1)) = 1 work ok

Computations

• Some of these results seem contradictory: it is, for instance,
very surprising that H2(S2 ∨ S1 ∨ S1) passes Test 2 but H2(S2)
does not.
• The isomorphism H2(S2 ∨ S1 ∨ S1) ∼= Z is essentially the same

(but more complicated) than H2(S2) ∼= Z.
• The isomorphism is given (roughly) by the projection

H2(S2 ∨ S1 ∨ S1)→ H2(S2)

Computations

• Another funny thing happens with H2(S2 ∨ S1 ∨ S1). Consider
the term ϕ(ϕ−1(1) +h ϕ

−1(1)). This reduces to 2.
• We can expand ϕ−1(1) – unsurprisingly, it is a pretty

complicated term. However, it is path equal to a much simpler
term, namely |g |0, where g : S2 ∨ S1 ∨ S1 → K2 is given by

g �S2 (x) =|x |
g �S1∨S1 (x) = 0k

• But, unlike the more complicated case with ϕ−1(1), Agda is
unable to evaluate ϕ(|g |0 +h |g |0)!

The solution

• By inspecting the construction of these functions, one notices
that the main difference between the constructions is a useless
0h that gets appended by the map from H2(S2 ∨ S1 ∨ S1)

• We can define a new addition, +′h by

x +′h y = (x +h 0h) +h (y +h 0h)

• With this definition of addition, the previous examples
compute!
• Why???
• Could a similar stupid trick be used for the Brunerie number?

The solution

• By inspecting the construction of these functions, one notices
that the main difference between the constructions is a useless
0h that gets appended by the map from H2(S2 ∨ S1 ∨ S1)

• We can define a new addition, +′h by

x +′h y = (x +h 0h) +h (y +h 0h)

• With this definition of addition, the previous examples
compute!

• Why???
• Could a similar stupid trick be used for the Brunerie number?

The solution

• By inspecting the construction of these functions, one notices
that the main difference between the constructions is a useless
0h that gets appended by the map from H2(S2 ∨ S1 ∨ S1)

• We can define a new addition, +′h by

x +′h y = (x +h 0h) +h (y +h 0h)

• With this definition of addition, the previous examples
compute!
• Why???

• Could a similar stupid trick be used for the Brunerie number?

The solution

• By inspecting the construction of these functions, one notices
that the main difference between the constructions is a useless
0h that gets appended by the map from H2(S2 ∨ S1 ∨ S1)

• We can define a new addition, +′h by

x +′h y = (x +h 0h) +h (y +h 0h)

• With this definition of addition, the previous examples
compute!
• Why???
• Could a similar stupid trick be used for the Brunerie number?

Conclusions

• We have defined a cohomology theory which is
computationally efficient enough to let us carry out several
non-trivial computations.
• This makes us able to produce several examples of numbers

similar to but simpler than the Brunerie number.
• Many of these numbers seem to push the limits of Agda

without being completely infeasible.
• Hopefully, these numbers can help shed some light on what it

is that makes these types of computations so complex.

