
Synthetic Cohomology Theory in Cubical Agda1

Guillaume Brunerie !2

Independent researcher, Sweden3

Axel Ljungström !4

Department of Mathematics, Stockholm University, Sweden5

Anders Mörtberg !6

Department of Mathematics, Stockholm University, Sweden7

Abstract8

This paper discusses the formalization of synthetic cohomology theory in a cubical extension of Agda9

which natively supports univalence and higher inductive types. This enables significant simplifications10

of many proofs from Homotopy Type Theory and Univalent Foundations as steps that used to require11

long calculations now hold simply by computation. To this end, we give a new group structure for12

cohomology with Z-coefficients, optimized for efficient computations. We also invent an optimized13

definition of the cup product which allows us to give the first complete formalization of the axioms14

needed to turn the Z-cohomology groups into a graded commutative ring. Using this, we characterize15

the cohomology groups of the spheres, torus, Klein bottle and real/complex projective planes. As all16

proofs are constructive we can then use Cubical Agda to distinguish between spaces by computation.17

2012 ACM Subject Classification Theory of computation → Constructive mathematics; Theory of18

computation → Type theory19

Keywords and phrases Synthetic Homotopy Theory, Cohomology Theory, Cubical Agda20

1 Introduction21

Homotopy Type Theory and Univalent Foundations (HoTT/UF) [38] extends Martin-Löf22

type theory [30] with Voevodsky’s univalence axiom [41] and higher inductive types (HITs).23

This is based on a close correspondence between types and topological spaces represented as24

Kan simplicial sets [24]. With this interpretation, points in spaces correspond to elements of25

types, while paths and homotopies correspond to identity types between these elements [3].26

This enables homotopy theory to be developed synthetically using type theory. Many classical27

results from homotopy theory have been formalized in HoTT/UF this way: the definition of28

the Hopf fibration [38], the Blakers-Massey theorem [22], the Seifert-van Kampen theorem [23]29

and the Serre spectral sequence [39], among others. Using these results, many homotopy30

groups of spaces—represented as types—have been characterized. However, just like in31

classical algebraic topology, these groups tend to be complicated to work with. Because of32

this, other topological invariants like cohomology have been invented.33

Informally, the cohomology groups Hn(X) of a space X describe its n-dimensional holes.34

For instance, the n-dimensional hole in the n-sphere Sn corresponds to Hn(Sn) ≃ Z. These35

holes constitute a topological invariant, making cohomology a powerful technique for es-36

tablishing which spaces cannot be homotopy equivalent. The usual formulation of singular37

cohomology using cochain complexes relies on taking the underlying set of topological spaces38

when defining the singular cochains [19]. This operation is not invariant under homotopy39

equivalence, which makes it impossible to use when formalizing cohomology synthetically.40

Luckily, there is an alternative definition of cohomology using Eilenberg-MacLane spaces41

which is homotopy invariant [26]. This was initially studied at the IAS special year on42

HoTT/UF in 2012–2013 [33] and has since been used to develop the Eilenberg-Steenrod ax-43

ioms [11] and cellular cohomology [8]. This paper builds on this prior work, but uses Cubical44

Agda—a recent cubical extension of the dependently typed programming language Agda [35].45

mailto:guillaume.brunerie@gmail.com
mailto:axel.ljungstrom@math.su.se
mailto:anders.mortberg@math.su.se
http://orcid.org/0000-0001-9558-6080

2 Synthetic Cohomology Theory in Cubical Agda

The Cubical Agda system is based on a variation of cubical type theory formulated by46

Coquand et al. [14]. These type theories can be seen as refinements of HoTT/UF where47

the homotopical intuitions are taken very literally and made part of the theory. Instead48

of relying on the inductively defined identity type [29] to define paths and homotopies, a49

primitive interval type I is added. Paths and homotopies are then represented as functions50

out of I, just like in traditional topology. This has some benefits compared to HoTT/UF.51

First, many proofs become simpler. For instance, function extensionality becomes trivial to52

prove, as opposed to in HoTT/UF where it either has to be postulated or derived from the53

univalence axiom [42]. Second, it gives computational meaning to HoTT/UF, which makes it54

possible to use the system to do computations using univalence and HITs. Finally, it makes it55

possible to formulate a general schema for HITs where the eliminators compute definitionally56

for higher constructors [12, 15]. This is still an open problem for HoTT/UF, and HITs have57

to be added axiomatically, which leads to bureaucratic transports that complicate proofs.58

Mörtberg and Pujet explored practical implications of formalizing synthetic homotopy59

theory in Cubical Agda in [31]. This work provided empirical evidence that formalizing60

synthetic homotopy theory in cubical type theory can lead to significant simplifications of61

the corresponding formal HoTT/UF proofs. For instance, the proof of the 3 × 3 lemma62

for pushouts was shortened from 3000 lines of code (LOC) in HoTT-Agda [7] to only 20063

in Cubical Agda. Another proof that becomes substantially shorter is the proof that the64

torus is equivalent to the product of two circles. This elementary result in topology turned65

out to have a surprisingly non-trivial proof in HoTT/UF because of the lack of definitional66

computation rules for higher constructors [25, 34]. With the additional computation rules of67

Cubical Agda, this proof is now trivial [40, Sect. 2.4.1].68

The present paper is a natural continuation of this prior work and the two main goals69

are to characterize Z-cohomology groups of types and to compute using these groups. In70

classical algebraic topology, characterize and compute are often used interchangeably when71

discussing cohomology. We are careful to distinguish these two notions. When characterizing72

a cohomology group of some type, we prove that it is isomorphic to another group. As all of73

our proofs are constructive, we can then use Cubical Agda to actually compute with this74

isomorphism. Having the possibility of doing proofs simply by computation is one of the75

most appealing aspects of developing synthetic homotopy theory cubically. As this is not76

possible with pen and paper proofs, or even with many formalized proofs in HoTT/UF, one77

often has to resort to doing long calculations by hand. If proofs instead can be carried out78

using a computer, many of these long calculations become obsolete. This is a reason why79

many proofs from synthetic homotopy theory are substantially shorter in Cubical Agda.80

However, not everything has successfully been possible to reduce to computations. A famous81

example is the Brunerie number. This is a synthetic definition of a number n : Z such that82

π4(S3) = Z/nZ. Brunerie proved in his PhD thesis [5] that n = ±2, but even though this is83

a constructive definition, it has thus far proved infeasible to compute using Cubical Agda,84

despite considerable efforts. In this paper, we construct a similar number, also inspired by [5],85

using the multiplicative structure on Hn(CP 2). This number was proved to be ±1 using86

sophisticated techniques in [5, Chapter 6], but we have thus far been unable to verify this87

purely by computation. However, as this number is substantially simpler than the Brunerie88

number, it provides a new challenge for constructive implementations of HoTT/UF which89

should be more feasible.90

Contributions: the main novel result of the paper is the first formalization of the91

graded commutative ring axioms for Z-cohomology in HoTT/UF (Section 4). To this end,92

we first develop Z-cohomology groups (Section 3). The definitions are inspired by [5], but93

G. Brunerie, A. Ljungström and A. Mörtberg 3

the additive structure is new and optimized for efficient computations. The definition of the94

cup product is also new and provides significant simplifications compared to related proofs95

in HoTT-Agda [4]. We also characterize the cohomology groups of various types (Section 5);96

for instance, we give the first synthetic characterizations of the cohomology groups of the97

Klein bottle and real projective plane. In order to characterize Hn(CP 2), we verify that our98

definition of cohomology satisfies the Eilenberg-Steenrod axioms for cohomology theories99

and construct the Mayer-Vietoris sequence (Appendix B). We finally reap the fruits of our100

constructive definitions in Section 6 where we prove that S2 ∨ S1 ∨ S1 and the torus are not101

equivalent by computing with Cubical Agda.102

All results in the paper have been formalized in Cubical Agda, but we also provide103

written up proofs, with details in Appendix A. Much of the code in the paper is literal104

Cubical Agda code, but we have taken some liberties when typesetting, to closer resemble105

standard mathematical notations. In order to clarify the connections between the paper106

and formalization, we provide a summary file: https://github.com/agda/cubical/blob/107

master/Cubical/Papers/ZCohomology.agda. This file typechecks with the –safe flag,108

which ensures that there are no postulates or unfinished goals.109

2 Homotopy Type Theory in Cubical Agda110

The Agda system [35] is a dependently typed programming language in which both programs111

and proofs can be written using the same syntax. Dependent function types (Π-types) are112

written (x : A) → B while non-dependent function types are written A → B. Implicit113

arguments to functions are written using curly braces {x : A} → B and function application114

is written using juxtaposition, so f x instead of f(x). Universes are written Type ℓ, where ℓ115

is a universe level. In order to ease notation, we omit universe levels in this paper. Readers116

familiar with Agda will also notice that we rename Set to Type. Agda supports many features117

of modern proof assistants and has recently been extended with an experimental cubical mode.118

The goal of this section is to introduce notions from HoTT/UF (including their formalizations119

in Cubical Agda) which the rest of the paper relies on. Due to space constraints, we omit120

many technical details and refer curious readers to the paper of Vezzosi et al. [40] for a121

comprehensive technical treatment of the features of Cubical Agda.122

2.1 Important notions in Cubical Agda123

The first addition to make Agda cubical is an interval type I with endpoints i0 and i1. This124

corresponds to the real interval [0, 1] ⊂ R. However, in Cubical Agda, this is a purely formal125

object. A variable i : I represents a point varying continuously between the endpoints. There126

are three primitive operations on I: minimum/maximum (_∧_, _∨_ : I→ I→ I) and reversal127

(∼_ : I → I). A function I→ Type represents a line between two types. By iterating this, we128

obtain squares, cubes and hypercubes of types making Agda inherently cubical. In order to129

specify the endpoints of a line, we use path types:130

PathP : (A : I → Type) → A i0 → A i1 → Type131

As paths are functions, they are introduced as λ i → t : PathP A t[i0 / i] t[i1 / i]. Given132

p : PathP A a0 a1, we can apply it to r : I and obtain p r : A r. Also, we always have133

that p i0 reduces to a0 and p i1 reduces to a1. The PathP types should be thought of as134

representing heterogeneous equalities since the two endpoints are in different types; this is135

similar to dependent paths in HoTT/UF [38, Section 6.2]. Given A : Type, we define the136

type of non-dependent paths in A using PathP as follows:137

https://github.com/agda/cubical/blob/master/Cubical/Papers/ZCohomology.agda
https://github.com/agda/cubical/blob/master/Cubical/Papers/ZCohomology.agda
https://github.com/agda/cubical/blob/master/Cubical/Papers/ZCohomology.agda

4 Synthetic Cohomology Theory in Cubical Agda

≡ : A → A → Type138

≡ x y = PathP (λ _ → A) x y139

Representing equalities as paths allows us to directly reason about equality. For instance,140

the constant path λ i→ x represents a proof of reflexivity refl : {x : A} → x ≡ x. We can141

also directly apply a function to a path in order to prove that dependent functions respect142

path-equality, as shown in the definition of cong below:143

cong : {B : A → Type} {x y : A} (f : (x : A) → B x) (p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y)144

cong f p = λ i → f (p i)145

We write cong2 for the binary version of cong; its proof is equally direct. These functions146

satisfy the standard property that refl gets mapped to refl. They are also definitionally147

functorial. The latter is an important difference to the corresponding operations defined using148

path induction which only satisfy the functoriality equations up to a path. Path types also149

let us prove new things that are not provable in standard Agda, e.g. function extensionality:150

funExt : {B : A → Type} {f g : (x : A) → B x} → ((x : A) → f x ≡ g x) → f ≡ g151

funExt p i x = p x i152

One of the key operations of type theoretic equality is transport: given an path between153

types, we get a function between these types. In Cubical Agda, this is defined using another154

primitive called transp. However, for this paper, the cubical transport function suffices:155

transport : {A B : Type} → A ≡ B → A → B156

transport p a = transp (λ i → p i) i0 a157

The substitution principle, called “transport” in HoTT/UF, is an instance of cubical transport:158

subst : (B : A → Type) {x y : A} → x ≡ y → B x → B y159

subst B p b = transport (λ i → B (p i)) b160

This function invokes transport with a proof that the family B respects the equality p. By161

combining transport and _∧_, we can define the induction principle for paths. However, an162

important difference between path types in Cubical Agda and HoTT/UF is that _≡_ does163

not behave like an inductive type. In particular, the cubical path induction principle does164

not definitionally satisfy the computation rule when applied to refl. Nevertheless, we can still165

prove that this rule holds up to a path. This is a subtle, but important, difference between166

cubical type theory and HoTT/UF. Readers familiar with HoTT/UF might be worried that167

the failure of this equality to hold definitionally complicates many proofs. However, in our168

experience, this is rarely the case, as many proofs that require path induction in HoTT/UF169

can be proved more directly using cubical primitives.170

Cubical Agda also has a primitive operation hcomp for composing paths and, more171

generally, for composing higher dimensional cubes. An important special case is binary172

composition of paths _·_ : x ≡ y → y ≡ z → x ≡ z. By composing paths and higher cubes173

using hcomp, we can reason about paths in a very direct way, avoiding path induction.174

2.2 Important concepts from HoTT/UF in Cubical Agda175

Pointed types and functions will play an important role in this paper. Formally, a pointed176

type is a pair (A , ∗A) where A is a type with ∗A : A. We write Type∗ for the universe of177

G. Brunerie, A. Ljungström and A. Mörtberg 5

pointed types. Given A,B : Type∗, a pointed function is a pair (f , p) : A →∗ B, where178

f : A→ B and p : f ∗A ≡ ∗B . We often leave ∗A and p implicit and write simply A : Type∗179

and f : A→∗ B. We also sometimes just write A for the underlying type of A : Type∗.180

Most HITs in [38] can be defined directly using the general schema of Cubical Agda. For181

example, the circle and suspension HITs can be written as:182

data S1 : Type where
base : S1
loop : base ≡ base

data Susp (A : Type) : Type where
north : Susp A
south : Susp A
merid : (a : A) → north ≡ south

183

Functions out of HITs are written using pattern-matching equations, just like regular184

Agda functions. When typechecking the cases for path constructors, Cubical Agda checks185

that the endpoints of what the user writes match up. We could directly define specific186

higher spheres as HITs with a base point and a constructor for iterated paths. However, the187

following definition is often easier to work with, as one can reason inductively about it:188

▶ Definition 1 (Sn). The n-spheres are pointed types defined by recursion:189

Sn =


(Bool , true) if n = 0
(S1 , base) if n = 1
(Susp Sn−1 , north) if n ≥ 2

190

We could equivalently have defined S1 = (Susp Bool , north), but in our experience, the191

base/loop-construction is often easier to work with and gives faster computations.192

Consistent with the intuition that types correspond to topological spaces (up to homotopy193

equivalence), we may consider loop spaces of pointed types.194

▶ Definition 2 (Loop spaces). Given a pointed type A : Type∗, we define its loop space as195

the pointed type ΩA = (∗A ≡ ∗A , refl). For n : N, we let Ωn+1 A = Ω (Ωn A).196

As an example of a non-trivial result which is proved using path induction in HoTT/UF,197

but which can be proved very concisely in Cubical Agda, consider the Eckmann-Hilton198

argument. It says that path composition in higher loop spaces is commutative and can be199

proved using a single transport with the unit laws for _·_ and some interval operations.200

EH : {n : N} (p q : Ω^ (2 + n) A) → p · q ≡ q · p201

EH p q = transport (λ i → (λ j → rUnit (p j) i) · (λ j → lUnit (q j) i)202

≡ (λ j → lUnit (q j) i) · (λ j → rUnit (p j) i))203

(λ i → (λ j → p (j ∧ ∼ i) · q (j ∧ i)) · (λ j → p (∼ i ∨ j) · q (i ∨ j)))204

A type A is not uniquely determined by its points—also (higher) paths over A have to be205

taken into account. However, for some types, these paths become trivial at some point. We206

define what this means formally as follows.207

▶ Definition 3 (n-types). Given n ≥ −2, a type A is:208

a (−2)-type if A is contractible (i.e. A is pointed by a unique point).209

an (n+ 1)-type if for all x, y : A, x ≡ y is an n-type.210

We write n-Type for the universe of n-types (at some level ℓ).211

Equivalently, we could have said that, for n ≥ −1, A is an n-type if Ωn+1A is contractible for212

any choice of base point a : A. We follow HoTT/UF terminology and refer to (−1)-types as213

propositions and 0-types as sets. A type is a proposition iff all of its elements are path-equal.214

6 Synthetic Cohomology Theory in Cubical Agda

Sometimes we are only interested in the structure of a type A and its paths up to a215

certain level n. That is, we want to turn A into an n-type while preserving the structure of216

A for levels less than or equal to n. This can be achieved using the n-truncation HITs ∥A ∥n.217

Just like for Sn, these are easily defined in Cubical Agda for fixed n, but for general n ≥ −2218

we rely on the “hub and spoke” construction [38, Section 7.3].1 This construction introduces219

an injection |_ | : A→ ∥A ∥n and path constructors hub and spoke ensuring that any map220

Sn+1 → ∥A ∥n is constant (thus contracting Ωn+1 ∥A ∥n). Using pattern-matching, we can221

define the usual elimination principle which says: given B : ∥A ∥n → n-Type, in order to222

construct an element of type B x, we may assume that x is of the form | a | for some a : A.223

This extends to paths p : |x | ≡ | y | in ∥A ∥n+1. Suppose we have B : |x | ≡ | y | → n-Type224

and want to construct B p. The elimination principle tells us that it suffices to do so when225

p = cong |_ | q for q : x ≡ y in A. This is motivated by [38, Theorem 7.3.12].226

Truncations allow us to talk about how connected a type is.227

▶ Definition 4 (Connectedness). A type A is n-connected if ∥A ∥n is contractible.228

Connectedness expresses in particular that |x | ≡ | y | holds in ∥A ∥n for all x, y : A of an229

n-connected type A. This enables applications of the induction principle for truncated path230

spaces discussed above. Most types in this paper are 0-connected. For such types, we can231

assume that x≡ y holds for x, y : A whenever we are proving a family of propositions.232

Another important class of HITs are pushouts. These correspond to homotopy pushouts233

in topology. Given f : A→ B and g : A→ C, the pushout of the span B
f← A

g→ C is:234

data Pushout (f : A → B) (g : A → C) : Type where235

inl : B → Pushout f g236

inr : C → Pushout f g237

push : (a : A) → inl (f a) ≡ inr (g a)238

Many types that we have seen so far can be defined as pushouts. For instance, SuspA is239

equivalent to the pushout of the span 1← A→ 1. Another example is wedge sums:240

▶ Definition 5 (Wedge sums). Given pointed types A and B, the wedge sum A∨B is the241

pushout of the span A
λ x → ∗A←−−−−−− 1

λ x → ∗B−−−−−−→ B. This is pointed by inl ∗A.242

2.3 Univalence243

One of the most important notions in HoTT/UF is Voevodsky’s univalence axiom [41].244

Informally, this postulates that for all types A and B, there is a term245

univalence : (A ≃ B) ≃ (A ≡ B)246

Here, A ≃ B is the type of functions e : A→ B equipped with a proof that the fiber/preimage247

of e is contractible at every x : B [38, Chapter 4.4]. This axiom is a provable theorem in248

Cubical Agda using the Glue types of [14, Section 6]. This gives a function ua : A ≃ B →249

A ≡ B which converts equivalences to paths. Transporting along a path constructed using250

ua applies the function e of the underlying equivalence.251

Equivalences A ≃ B are often constructed by exhibiting functions f : A → B and252

g : B → A together with proofs that they cancel. Such a quadruple is referred to as a253

1 For n = −2 this construction fails. In this case, simply let ∥ A ∥−2 = 1 where 1 is the unit type.

G. Brunerie, A. Ljungström and A. Mörtberg 7

quasi-equivalence in [38]. It is a corollary of [38, Theorem 4.4.5] that all quasi-equivalences254

can be promoted to equivalences. This fact is used throughout the formalization and paper.255

An important consequence of univalence is that it also applies to structured types. A256

structure on types is simply a function S : Type → Type. By taking the dependent sum257

of this, one obtains types with S-structures as pairs (A , s) : ΣA:Type (S A). One example258

is the type of groups. This is defined as (G , isGroup G), where isGroup G is a structure259

which consists of proofs that G is a set, is pointed by some 0G : G, admits a binary260

operation +G, and satisfies the usual group laws. In [2], a notion of univalent structure and261

structure preserving isomorphisms ∼=, for which it is direct to prove that ua induces a function262

sip : A ∼= B → A ≡ B, are introduced in Cubical Agda. This is one way to formalize the263

informal Structure Identity Principle (SIP) from HoTT/UF [38, Section 9.8]. One can show264

that isGroup is a univalent structure and that equivalences e : G ≃ H sending +G to +H265

preserve this structure. In other words: sip implies that isomorphic groups are path-equal.266

3 Z-cohomology in Cubical Agda267

In classical mathematics, the n:th cohomology group with coefficients in an abelian group268

G of a CW-complex X may be characterized as the group of homotopy classes of functions269

X → K(G,n). Here, K(G,n) denotes the n:th Eilenberg-MacLane space of G. That is,270

K(G,n) is the unique space with a single non-trivial homotopy group isomorphic to G, i.e.271

πn(K(G,n)) ∼= G and πm(K(G,n)) ∼= 1 for m ̸= n. While this is a theorem in classical272

mathematics, we take it as our definition of the n:th cohomology group of a type A:273

Hn(A;G) = ∥A→ K(G,n) ∥0274

This type inherits the group structure from K(G,n) and the goal of this section is to define275

this explicitly when G = Z. The group structure which we will define here differs from276

previous variations in that it is optimized for efficient computations.277

3.1 Eilenberg-MacLane spaces278

The family of spaces K(G,n) was constructed as a HIT and proved to be an n-truncated279

and (n− 1)-connected pointed type by Licata and Finster [26]. In this paper, we focus on280

the case G = Z and define this special case following Brunerie [5, Def. 5.1.1]:281

▶ Definition 6. The n:th Eilenberg-MacLane space of Z, written Kn, is a pointed type:282

Kn =
{

(Z , 0) if n = 0
(∥Sn ∥n , | ∗Sn |) if n ≥ 1

283

We write Hn(A) for Hn(A; Z) with Kn for K(Z, n). The type Kn is clearly n-truncated and284

the fact that it is (n− 1)-connected follows from the following proposition.285

▶ Proposition 7. Sn is (n− 1)-connected for n : N.286

Proof. By the definition of (n − 1)-truncation, the map |_ | : Sn → ∥Sn ∥n−1 is constant.287

Hence, ∥Sn ∥n−1 has a trivial constructor and must be contractible. ◀288

Note that, in particular, Kn is 0-connected for n > 0; it is an easy lemma that any m-289

connected type is also k-connected for k < m. Alternatively, one may prove 0-connectedness290

of Kn directly by truncation elimination and sphere elimination.291

8 Synthetic Cohomology Theory in Cubical Agda

The above proof is much more direct than the one in [5, Prop. 2.4.2] which relies on292

general results about connectedness of pushouts. The reason we prefer this more direct, but293

less general proof, is that it computes much faster. The problem seems to be that the general294

theory of connectedness heavily uses univalence. In particular, it relies on repeated use of295

[38, Thm. 7.3.12] which says that the type of paths |x | ≡ | y | over ∥A ∥n+1 is equivalent to296

the type of truncated paths ∥x ≡ y ∥n.297

A more substantial deviation from [5] is in the definition of the group structure on298

Kn. This is defined in [5, Prop. 5.1.4] using Kn ≃ Ω Kn+1 which itself is proved using the299

Hopf fibration [38, Section 8.5] when n = 1 and the Freudenthal suspension theorem [38,300

Section 8.6] when n ≥ 2. This gives rather indirect definitions of addition and negation301

on Kn by going through Ω Kn+1. It turns out that these indirect definitions lead to slow302

computations [28]. To circumvent this, we give a direct definition of the group structure on303

Kn which in turn gives a direct proof that Kn ≃ Ω Kn+1 inspired by the proof that Ω S1 ≃ Z304

of Licata and Shulman [27]. The strategy of first defining the group structure on Kn to then305

prove that Ω Kn+1 ≃ Kn is similar to the one for proving the corresponding statements for306

general K(G,n) in [26]. However, we deviate in that we avoid the Freudenthal suspension307

theorem and theory about connectedness.308

The neutral element of Kn is ∗Kn and we denote it by 0k. In order to prove that Kn is309

a group, we first define addition +k : Kn → Kn → Kn. The following lemma is the key for310

doing this. It is a special case of [38, Lemma 8.6.2], but the proof does not rely on general311

theory about connected types.312

▶ Lemma 8. Let n,m ≥ 1 and suppose we have a fibration P : Sn × Sm → (n+m− 2)-Type
together with functions

f l : (x : Sn)→ P (x , ∗Sm) f r : (y : Sm)→ P (∗Sn , y)

and a path p : f l ∗Sn ≡ f r ∗Sm . There is a function f : (z : Sn × Sm)→ P z with paths

left : (x : Sn)→ f l x ≡ f (x , ∗Sm) right : (y : Sm)→ f r y ≡ f (∗Sn , y)

such that p ≡ left ∗Sn · (right ∗Sm)-1. Furthermore, either left or right holds definitionally.313

Proof. The proof is by sphere induction on both Sn and Sm. For details see Appendix A.1. ◀314

The general version of Lemma 8 is used for K(G,n) in [26]. The advantage of the above315

form is the definitional reductions which follow from use of sphere induction in its proof.316

Consequently, we may define +k so that e.g. 0k +k |x | ≡ |x | holds definitionally. This317

allows for statements and proofs which would otherwise not be well-typed.318

We define +k : Kn → Kn → Kn and -k : Kn → Kn by cases on n. When n = 0, these are319

integer addition and negation. Otherwise, we consider the following cases:320

When n = 1, we define +k and -k by cases:321

x	+k	base	=	x
base	+k	loop j	=	loop j
loop i	+k	loop j	=	Q i j

-k | base | = | base |
-k | loop i | = | loop (∼ i) |322

where Q is a suitable filler of a square with loop on all sides. The filler Q is easily defined323

by an hcomp so that cong2 (λx y → |x | +k | y |) loop loop ≡ cong |_ | (loop · loop) holds324

definitionally. We will, from now on, with some abuse of notation, simply write loop for325

the canonical loop in K1, i.e. cong |_ | loop.326

G. Brunerie, A. Ljungström and A. Mörtberg 9

When n ≥ 2, we need to construct a map Sn × Sn → Kn to define addition. Because327

Kn is n-truncated, it is also an (n+ n− 2)-Type. By Lemma 8, we are done if we can328

provide two maps Sn → Kn and prove that they agree on ∗Sn . In both cases we choose329

the inclusion map λx→ |x |. We then just need to prove that | ∗Sn | ≡ | ∗Sn |, which330

we do by refl.331

To construct -k, we send | north | and | south | to 0k and |merid a i | to σn a (∼ i). Here,332

σn is the map from the Freudenthal equivalence [38, Section 8.6] defined by:333

σn : Kn → Ω Kn+1334

σn |x | = cong |_ | (merid x · (merid ∗Sn)-1)335
336

The fact that +k and -k satisfy the group laws follows from Lemma 8. In fact, all group337

laws either hold by refl or have proofs that are at least path-equal to refl at 0k. This in338

turn simplifies many later proofs and improves the efficiency of computations. We write339

lUnitk/rUnitk for the left/right unit laws and lCancelk/rCancelk for the left/right inverse laws.340

The definition of +k for n ≥ 2 may seem naive. However, it provably agrees with the341

definition given in [5, Prop. 5.1.4]. In fact, a simple corollary of Lemma 8 is that there is at342

most one binary operation on Kn with lUnitk and rUnitk such that lUnitk 0k ≡ rUnitk 0k (i.e.343

there is at most one h-structure [26, Def. 4.1] on Kn). The fact that this is satisfied by +k344

holds by refl. The same result was proved for the addition of [5, Prop. 5.1.4] in [28].345

The group structure on Kn allows us to extend the usual encode-decode proof that346

Z ≃ Ω S1 (or, equivalently, K0 ≃ Ω K1) to Kn with n ≥ 1. We should note that a similar347

proof was used in [26] in order to prove that G ≃ π1(K(G, 1)).348

▶ Theorem 9. Kn ≃ Ω Kn+1349

Proof. The proof is a direct encode-decode proof involving +k and σn. The details can be350

found in Appendix A.1. ◀351

In addition to this, the direct definition of +k gives a short proof that Ω Kn is commutative.352

▶ Lemma 10. For n ≥ 1 and p, q : Ω Kn, we have p · q ≡ cong2 +k p q.353

Proof. First, we remark that the statement is well-typed due to the definitional equality
0k +k 0k ≡ 0k. Recall, p, q : 0k ≡ 0k and cong2 +k p q is of type 0k +k 0k ≡ 0k +k 0k.
Using this definitional equality, we may apply rUnitk and lUnitk pointwise to p and q:

p ≡ cong (λx → x +k 0k) p q ≡ cong (λ y → 0k +k y) q

By functoriality of cong2, we get354

p · q ≡ cong (λx→ x +k 0k) p · cong (λ y → 0k +k y) q ≡ cong2 +k p q ◀355

▶ Lemma 11. For n ≥ 1 and p, q : Ω Kn, we have cong2 +k p q ≡ cong2 +k q p.356

Proof. By a very similar argument as in Lemma 10, but using commutativity of +k. ◀357

▶ Theorem 12. Ω Kn is commutative with respect to path composition.358

Proof. As Z is a set, this is trivial for n = 0. For n ≥ 1 it follows from Lemmas 10 and 11. ◀359

An alternative proof of Theorem 12 can be found in [5, Prop. 5.1.4]. In that proof, one360

first translates Ω Kn into Ω2 Kn−1, applies the Eckmann-Hilton argument and then translates361

back. This translation back-and-forth is problematic from a computational point of view,362

and the proof of Theorem 12 is more computationally efficient.363

10 Synthetic Cohomology Theory in Cubical Agda

3.2 Group structure on Hn(A)364

We now return to Hn(A) and define 0h = |λx → 0k | together with the group operations:

| f | +h | g | = |λx → f x +k g x | -h | f | = |λx → -k f x |

The fact that (Hn(A), 0h,+h, -h) forms an abelian group follows immediately from the group365

laws for Kn and funExt. We have also defined a reduced version of our cohomology theory366

and proved that it satisfies the Eilenberg-Steenrod axioms [16]. We refer the interested367

reader to Appendix B for the statement and verification of these axioms. This allows us368

to use abstract machinery to characterize cohomology groups of many spaces. However, in369

order to obtain definitions with good computational properties, we often prefer giving direct370

characterizations not relying on abstract results.371

4 The Cup Product and Cohomology Ring372

We will now equip the cohomology groups studied in the previous section with a multiplicative373

structure ⌣ : Hn(A)→ Hm(A)→ Hn+m(A). This operation is called the cup product and374

it turns the Hn(A) into a graded commutative ring H∗(A) called the cohomology ring of A.375

4.1 Defining the cup product in Cubical Agda376

The cup product ⌣ for Z-cohomology in HoTT/UF was introduced by Brunerie [5, Section377

5.1]. The definition is induced from a pointed map Kn ∧Km →∗ Kn+m, where ∧ is the smash378

product HIT. This HIT has proved to be surprisingly complex to reason about formally [6]379

and we therefore consider an alternative definition of ⌣. The key observation in this380

reformulation is the pointed equivalence of A∧B →∗ C and A →∗ B →∗ C proved in381

HoTT/UF by van Doorn [39, Thm 4.3.8]. We hence construct ⌣ by first defining a pointed382

map x ⌣k y : Kn → Km →∗ Kn+m by induction on n, thereby avoiding the smash product.383

When n = 0, this map just adds y to itself x times and similarly when m = 0. When384

n,m ≥ 1, the key lemma is:385

▶ Lemma 13. The type Km →∗ Kn+m is an n-type.386

Proof. This is a special case of [9, Corollary 4.3]. We give a direct proof of this special case387

in Appendix A.2 which does not rely on any explicit connectedness arguments. ◀388

Truncation elimination can hence be applied and we only need to define | a |⌣k y for a : Sn.389

n = 1 :
| base |⌣k y = 0k

| loop i |⌣k y = σm y i

n ≥ 2 :
| north |⌣k y = 0k

| south |⌣k y = 0k

|merid a i |⌣k y = σ(n−1)+m (| a |⌣k y) i

390

The fact that λ y → x ⌣k y is pointed for x : Kn follows easily. In addition, we get391

pointedness in x immediately by construction. With this simple definition, we can now define392

the cup product ⌣ : Hn(A)→ Hm(A)→ Hn+m(A) analogously to +h by:393

| f |⌣ | g | = |λx → f x ⌣k g x |394

G. Brunerie, A. Ljungström and A. Mörtberg 11

4.2 The cohomology ring395

We will now prove that ⌣ turns Hn(A) into a graded ring. First of all, as ⌣k is pointed396

in both arguments, we get that x ⌣ 0h ≡ 0h ≡ 0h ⌣ y. Furthermore, it is easy to see that397

1h = |λx → 1 | in H0(A) is a unit for ⌣. The key lemma for proving properties of ⌣k is:398

▶ Lemma 14. Given a pointed type A and two pointed functions (f, p), (g, q) : A→∗ Kn, we399

have that if f ≡ g then (f, p) ≡ (g, q).400

Proof. This is proved using a notion of homogeneous types in Appendix A.2. ◀401

In order to increase readability, we omit transports in Propositions 15, 17, and 18. We402

first verify that ⌣k distributes over +k.403

▶ Proposition 15. For z : Kn and x, y : Km, we have z ⌣k (x +k y) ≡ z ⌣k x +k z ⌣k y404

and (x +k y) ⌣k z ≡ x ⌣k z +k y ⌣k z.405

Proof. We sketch the proof for left distributivity and focus on the case when n,m ≥ 1. We
want to show that λ z → z ⌣k (x +k y) and λ z → z ⌣k x +k z ⌣k y are equal as pointed
functions. This allows for truncation elimination on x and y by Lemma 13. Thus we want
to show that z ⌣k (| a | +k | b |) ≡ z ⌣k | a | +k z ⌣k | b | for a, b : Sm. We are proving an
(m− 1)-type and Lemma 8 applies. Hence we need to construct

fl : (a : Sn)→ z ⌣k (| a | +k 0k) ≡ z ⌣k | a | +k z ⌣k 0k

fr : (b : Sm)→ z ⌣k (0k +k | b |) ≡ z ⌣k 0k +k z ⌣k | b |

such that fl(∗Sn) ≡ fr(∗Sm). By Lemma 14, we only need to construct fl and fr for the406

underlying functions. We get fl and fr by applications of lUnitk/rUnitk and the law of right407

multiplication by 0k. Due to definitional equalities at 0k, fl(∗Sn) ≡ fr(∗Sm) holds by refl. ◀408

In order to prove that ⌣k is associative, we need the following lemma:409

▶ Lemma 16. Let n,m ≥ 1. For x : Kn and y : Km, σn+m(x ⌣k y) ≡ cong (⌣k y) (σn x).410

Proof. This is proved in Appendix A.2. ◀411

Lemma 16 occurs in [5, Prop. 6.1.1], albeit for a different definition of ⌣. Interestingly,412

Brunerie does not use it to prove associativity of ⌣k, but to construct the Gysin sequence.413

▶ Proposition 17. For x : Kn, y : Km and z : Kℓ, we have x ⌣k (y ⌣k z) ≡ (x ⌣k y) ⌣k z.414

Proof. The proof is easy when one of n, m or ℓ is 0. When n,m, ℓ ≥ 1, we want to show that415

λ z y → x ⌣k (y ⌣k z) and λ z y → (x ⌣k y) ⌣k z are equal as doubly pointed functions,416

i.e. as terms of Km →∗ Kℓ →∗ Kn+m+ℓ. This is an n-type by repeated use of Lemma 13417

and we may let x = | a | for a : Kn. We again only need to prove the underlying functions418

equal. We do this by induction on n. For n = 1, the case a = base holds by refl. In the case419

a = loop i, we need to prove that σm+ℓ(y ⌣k z) ≡ cong (⌣k z) (σm y) which is Lemma 16.420

The n ≥ 2 case follows by an analogous argument using the inductive hypothesis. ◀421

Finally, we can verify that ⌣k is graded commutative.422

▶ Proposition 18. For x : Kn and y : Km, we have x ⌣k y ≡ -k
m·n (y ⌣k x).423

Proof. This is very non-trivial to check and a proof sketch can be found in Appendix A.2. ◀424

The cup product ⌣ inherits the properties of ⌣k and we can hence organize Hn(A) into425

a graded commutative ring H∗(A).426

12 Synthetic Cohomology Theory in Cubical Agda

5 Characterizing Z-cohomology Groups427

We will now characterize Hn(A) for A being the spheres, torus, Klein bottle, and real/complex428

projective planes. It is an easy lemma that H0(A) ≃ Z if A is 0-connected, which is the429

case for all types considered here. The cases when Hn(A) ≃ 1 for n ≥ 1 are also easy using430

connectedness arguments. For a detailed proof of this for Sn, see Appendix A.3. The main431

focus in this section will hence be on the non-trivial Hn(A) with n ≥ 1. Furthermore, we432

only focus on the equivalence parts of the characterizations, but we emphasize that all cases,433

including homomorphism proofs, have been formalized.434

5.1 Spheres435

The key to characterizing the cohomology groups of Sn is the Suspension axiom for cohomol-436

ogy. This axiom says that Hn(A) ≃ Hn+1 (Susp A) and a proof can be found in Appendix B.437

Recall that Sm+1 = Susp Sm for m ≥ 1 and thus we have that Hn+1(Sm+1)≃Hn(Sm).438

▶ Proposition 19. Hn(Sn) ≃ Z for n ≥ 1.439

Proof. By Suspension and induction, it suffices to consider the n = 1 case. We inspect the440

underlying function space ofH1(S1), i.e. S1 → K1. A map f : S1 → K1 is uniquely determined441

by f base : K1 and cong f loop : f base ≡ f base. Thus, we have H1(S1) ≃ ∥
∑

x:K1
x ≡ x ∥0.442

By a base change we get (x ≡ x) ≃ (0k ≡ 0k) for any x : K1. Hence443

H1(S1) ≃ ∥K1 × Ω K1 ∥0 ≃ ∥K1 ∥0 × ∥Ω K1 ∥0 ≃ ∥Ω K1 ∥0 ≃ ∥Ω S1 ∥0 ≃ Z ◀444

5.2 The torus445

The torus HIT, T 2, is defined as follows:446

data T2 : Type where447

pt : T2
448

ℓ1 ℓ2 : pt ≡ pt449

□ : PathP (λ i → ℓ2 i ≡ ℓ2 i) ℓ1 ℓ1450

The constructor □ corresponds to the usual gluing diagram for constructing the torus in451

classical topology as it identifies ℓ1 with itself over an identification of ℓ2 with itself. As452

discussed in the introduction, proving T 2≃S1×S1 is easy in Cubical Agda. This allows us453

to curry T 2 → Kn, which is the key step to prove Propositions 20 and 21.454

▶ Proposition 20. H1(T 2) ≃ Z × Z455

Proof. We inspect the underlying function space T 2 → K1, which is equivalent to S1 →456 (
S1 → K1

)
. From Proposition 19, we know that

(
S1 → K1

)
≃ K1 × Ω K1 ≃ K1 × Z. Hence457

H1(T 2) ≃∥S1 → K1×Z ∥0≃∥S1 → K1 ∥0×∥S1 → Z ∥0
def≡H1(S1) ×H0(S1)≃Z×Z ◀458

▶ Proposition 21. H2(T 2) ≃ Z459

Proof. The underlying function space, post currying, is S1 → (S1 → K2). Like above, this is460

(S1 → K2 × Ω K2) ≃ (S1 → K2 × K1) ≃
(
S1 → K2

)
×
(
S1 → K1

)
. Hence461

H2(T 2) ≃ ∥ (S1 → K2
)
×
(
S1 → K1

)
∥0 ≃ H

2(S1) × H1(S1) ≃ Z ◀462

G. Brunerie, A. Ljungström and A. Mörtberg 13

5.3 The Klein bottle and real projective plane463

The Klein bottle and real projective plane are also HITs, but with twists in □ just like in the464

classical gluing diagrams:465

data K2 : Type where
pt : K2

ℓ1 ℓ2 : pt ≡ pt
□ : PathP (λ i → ℓ2 (∼ i) ≡ ℓ2 i) ℓ1 ℓ1

data RP 2 : Type where
pt : RP 2

ℓ : pt ≡ pt
□ : ℓ ≡ ℓ −1

466

Note that □ for K 2 equivalently may be interpreted as the path ℓ2 · ℓ1 · ℓ2 ≡ ℓ1. To467

characterize the cohomology groups of K 2, we need to understand their underlying function468

spaces. It is easy to see that469 (
K 2 → Kn

)
≃
∑
x:Kn

∑
p,q:x ≡ x

(p · q · p ≡ q)470

By Theorem 12, _·_ in Ω Kn is commutative, so (p · q · p ≡ q) ≃ (p · p ≡ refl). Hence471

(
K 2 → Kn

)
≃
∑
x:Kn

(
(x ≡ x) ×

∑
p:x ≡ x

(p · p ≡ refl)
)

(1)472

473

▶ Proposition 22. H1(K 2) ≃ Z474

Proof. Note that for x : K1, we have that
∑

p:x ≡ x(p · p ≡ refl) ≃
∑

a:Z(a + a ≡ 0) ≃ 1.475

This allows us to simplify (1) and get476

H1(K 2) ≃ ∥K 2 → K1 ∥0 ≃ ∥
∑
x:K1

(x ≡ x) ∥0 ≃ H
1(S1) ≃ Z ◀477

▶ Lemma 23. For n : Z, define p : ∥
∑

x:K1
(x +k x ≡ 0k) ∥0 by p = | (0k , loopn) |. We have478

p ≡ | (0k , refl) | if n is even and p ≡ | (0k , loop) | if n is odd.479

Proof. This is proved in Appendix A.3. ◀480

▶ Proposition 24. H2(K 2) ≃ Z/2Z481

Proof. Using 0-connectedness of K2 and (x ≡ x) for x : K2, it is easy to see that, by482

truncating both sides of (1), we get483

H2(K 2) ≃ ∥ ∑
p:Ω K2

(p · p ≡ refl) ∥0484

Using the equivalence Ω K2 ≃ K1 and the fact that it takes path composition to addition,485

this can be further simplified to ∥
∑

x:K1
(x +k x ≡ 0k) ∥0. It is easy to see that for any486

p : ∥
∑

x:K1
(x +k x ≡ 0k) ∥0, we have that p ≡ | (0k , loopn) | for some n : N. We map p into487

Z/2Z by sending it to 0 if n is even and 1 if n is odd. As an immediate consequence of488

Lemma 23, this map must be an equivalence, and thus we are done. ◀489

The attentive reader will have noticed that something reminiscent of the real projective490

plane, RP 2, appears in both proofs in this section. We characterize Hn(RP 2) for n ≥ 1 by491

∥RP 2 → Kn ∥0≃∥
∑
x:Kn

∑
p:x ≡ x

(p≡ p -1) ∥0≃∥
∑
x:Kn

∑
p:x ≡ x

(p · p≡ refl) ∥0≃∥
∑

p:Ω Kn

(p · p≡ refl) ∥0492

When n is 1 or 2, this is precisely one of the types appearing in the proofs of Propositions 22493

and 24 respectively, so H1(RP 2) ≃ 1 and H2(RP 2) ≃ Z/2Z.494

14 Synthetic Cohomology Theory in Cubical Agda

5.4 The complex projective plane495

We define the complex projective plane, CP 2, as the pushout of the span S2 h←− S3 → 1496

where h is part of the Hopf fibration [38, Section 8.5]. The function space CP 2 → Kn is quite497

hard to work with directly, so we settle for an indirect characterization of Hn(CP 2) via the498

Mayer-Vietoris sequence (see Appendix B.3). For n ≥ 2, this gives us an exact sequence:499

Hn−1(S2)→ Hn−1(S3)→ Hn(CP 2)→ Hn(S2)→ Hn(S3)500

For n ∈ {3, 5, 6, . . . }, we have that Hn(CP 2)≃1, as other groups in the sequence become501

trivial. When n = 2, all groups but H2(S2) are trivial, and hence H2(CP 2)≃H2(S2)≃Z.502

When n = 4, the only non trivial group is H3(S3), and hence we get H4(CP 2)≃H3(S3)≃Z.503

A simple connectedness argument finally gives us that H1(CP 2)≃1.504

6 Proving by computations in Cubical Agda505

One of the appealing aspects of developing cohomology theory in Cubical Agda is that we can506

prove properties purely by computation. This can discharge proof goals involving complex507

path algebra as soon as the types are fully instantiated. For example, in Proposition 18 when508

m = n = 1, the main subgoal involves compositions paths in Ω2 K2 which can be reduced to509

a computation purely involving Z, using the equivalence Ω2 K2≃Z. As we have been careful510

about proving things as directly as possible with efficient computations in mind, this works511

quite well, but there are some cases which are surprisingly slow in Cubical Agda, and we512

have collected some benchmarks in Appendix C.513

Furthermore, we can use the fact that the isomorphisms compute to establish that some514

types cannot be equivalent. This is the case for all spaces in the previous section, as they have515

different cohomology groups. However, there are some spaces where it is not enough to only516

look at the cohomology groups. We have proved in Appendix B that our cohomology theory517

satisfies the Binary Additivity axiom which says that Hn(A∨B)≃Hn(A)×Hn(B). So518

we can easily prove that S2 ∨S1 ∨S1 has the same cohomology groups as T 2. However, these519

two types are not equivalent and the standard way to prove this is to use the cup product.520

We can do this traditional proof computationally in Cubical Agda by defining a predicate521

P : Type → Type by P (A) = (x y : H1(A)) → x ⌣ y ≡ 0h and show that P (S2 ∨S1 ∨S1)522

holds while P (T 2) does not. In Cubical Agda, we have defined isomorphisms:523

f1 : H1(T 2)∼= Z × Z

f2 : H2(T 2)∼= Z

g1 : H1(S2 ∨S1 ∨S1)∼= Z × Z

g2 : H2(S2 ∨S1 ∨S1)∼= Z

524

525

To disprove P (T 2) we need x, y : H1(T 2) such that x ⌣ y ̸≡ 0h. Let x = f−1
1 (0, 1) and526

y = f−1
1 (1, 0). In Cubical Agda, f2(x ⌣ y)≡ 1 holds by refl and thus x ⌣ y ̸≡ 0k. It527

remains to prove P (S2 ∨S1 ∨S1). Let x, y : H1(S2 ∨S1 ∨S1). In Cubical Agda, we have that528

g2(g−1
1 (g1 x) ⌣ g−1

1 (g1 y)) ≡ 0, again by refl, and thus g−1
1 (g1 x) ⌣ g−1

1 (g1 y) ≡ x ⌣ y ≡ 0h.529

For a more ambitious example, consider Chapter 6 of Brunerie’s PhD thesis [5]. This530

chapter is devoted to proving, using sophisticated techniques like the Gysin sequence, that531

the generator e : H2(CP 2) when multiplied with itself yields a generator of H4(CP 2). Let532

g : Z→ Z be the map described by533

Z
∼=−→ H2(CP 2) λ x→x ⌣ x−−−−−−−→ H4(CP 2)

∼=−→ Z534

The number g(1) should reduce to ±1 for e ⌣ e to generate H4(CP 2) and by evaluating it535

in Cubical Agda we should be able to reduce the whole chapter to a single computation.536

G. Brunerie, A. Ljungström and A. Mörtberg 15

However, Cubical Agda is currently stuck on computing g(1). This number can hence be537

seen as another “Brunerie number”—a mathematically interesting number which is currently538

infeasible to compute using an implementation of cubical type theory. This computation539

should be more feasible than the original Brunerie number. As our definition of ⌣ produces540

very simple terms, most of the work has to occur in the two isomorphisms, and we are541

optimistic that future optimizations will allow us to perform this computation.542

7 Conclusions543

We have developed multiple classical results from cohomology theory synthetically in Cubical544

Agda. This has led to new and more direct constructive proofs than what already exists in the545

HoTT/UF literature. Furthermore, Section 4 contains the first fully formalized verification of546

the graded commutative ring axioms for Z-cohomology. The key to this is the new definition547

of ⌣ which avoids the smash product. The synthetic characterizations of the cohomology548

groups of K 2 and RP 2 are also novel. The proofs have been constructed with computational549

efficiency in mind, allowing us to make explicit computations involving several non-trivial550

cohomology groups. In particular, the number g(1) is another “Brunerie number” which551

should be more feasible to compute, and its computation would allow us to reduce the552

complex proofs of [5, Chapter 6] to a single computation. This is hence a new challenge for553

future improvements of Cubical Agda and related systems like cooltt [37].554

7.1 Related and future work555

In addition to the related work already mentioned in the paper, there is some related prior556

work in Cubical Agda. Qian [32] formalized K(G, 1) as a HIT, following [26], and proved557

that it satisfies π1(K(G, 1)) ≡ G. Alfieri [1] and Harington [18] formalized K(G, 1) as the558

classifying space BG using G-torsors. Using this, H1(S1; Z) ≡ Z was proved—however,559

computing using the maps in this definition proved to be infeasible. It is not clear where560

the bottlenecks are, but we emphasize that with the definitions in this paper, there are no561

problems computing with this cohomology group.562

Certified computations of homology groups using proof assistants have been considered563

before the invention of HoTT/UF. For instance, the Coq system [36] has been used to564

compute homology [21] and persistent homology [20] with coefficients in a field. This was565

later extended to homology with Z-coefficients in [10]. The approach in these papers was566

entirely algebraic and spaces were represented as simplicial complexes. However, a synthetic567

approach to homology in HoTT/UF was developed informally by Graham [17] using stable568

homotopy groups. This was later extended with a proof of Hurewicz theorem by Christensen569

and Scoccola [13]. It would be interesting to see if this could be made formal in Cubical570

Agda so that we can also characterize and compute with homology groups.571

The definition of H∗(A) in HoTT/UF is due to Brunerie [5, Chapter 5.1]. Here, however,572

⌣ relies on the smash product which has proved very complex to reason about formally [6].573

Despite this, Baumann generalized this to Hn(X;G) and managed to formalize graded574

commutativity in HoTT-Agda [4]. Baumann’s formal proof of this property is ∼ 5000 LOC575

while our formalization is just ∼ 900 LOC. This indicates that it would be infeasible to576

formalize other algebraic properties of H∗(A) with this definition. Associativity seems577

particularly infeasible, but with our definition the formal proof is only ∼ 200 LOC. However,578

this comparison should be taken with a grain of salt as Baumann proves the result for579

Hn(X;G). Nevertheless, we conjecture that our constructions should be relatively easy to580

generalize to cohomology with coefficients in an arbitrary group.581

16 Synthetic Cohomology Theory in Cubical Agda

References582

1 Victor Alfieri. Formalisation de notions de théorie des groupes en théorie cubique des types,583

2019. Internship report, supervised by Thierry Coquand.584

2 Carlo Angiuli, Evan Cavallo, Anders Mörtberg, and Max Zeuner. Internalizing representation585

independence with univalence. Proc. ACM Program. Lang., 5(POPL), January 2021. doi:586

10.1145/3434293.587

3 Steve Awodey and Michael A. Warren. Homotopy theoretic models of identity types. Math-588

ematical Proceedings of the Cambridge Philosophical Society, 146(1):45–55, January 2009.589

doi:10.1017/S0305004108001783.590

4 Tim Baumann. The cup product on cohomology groups in homotopy type theory. Master’s591

thesis, University of Augsburg, 2018.592

5 Guillaume Brunerie. On the homotopy groups of spheres in homotopy type theory. PhD thesis,593

Université Nice Sophia Antipolis, 2016. URL: http://arxiv.org/abs/1606.05916.594

6 Guillaume Brunerie. Computer-generated proofs for the monoidal structure of the smash595

product. Homotopy Type Theory Electronic Seminar Talks, November 2018. URL: https:596

//www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html.597

7 Guillaume Brunerie, Kuen-Bang Hou (Favonia), Evan Cavallo, Tim Baumann, Eric Finster,598

Jesper Cockx, Christian Sattler, Chris Jeris, Michael Shulman, et al. Homotopy Type Theory599

in Agda, 2018. URL: https://github.com/HoTT/HoTT-Agda.600

8 Ulrik Buchholtz and Kuen-Bang Hou Favonia. Cellular Cohomology in Homotopy Type601

Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer602

Science, LICS ’18, pages 521–529, New York, NY, USA, 2018. Association for Computing603

Machinery. doi:10.1145/3209108.3209188.604

9 Ulrik Buchholtz, Floris van Doorn, and Egbert Rijke. Higher Groups in Homotopy Type605

Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer606

Science, LICS ’18, pages 205–214, New York, NY, USA, 2018. Association for Computing607

Machinery. doi:10.1145/3209108.3209150.608

10 Guillaume Cano, Cyril Cohen, Maxime Dénès, Anders Mörtberg, and Vincent Siles. For-609

malized Linear Algebra over Elementary Divisor Rings in Coq. Logical Methods in Com-610

puter Science, 12(2), 2016. URL: http://dx.doi.org/10.2168/LMCS-12(2:7)2016, doi:611

10.2168/LMCS-12(2:7)2016.612

11 Evan Cavallo. Synthetic Cohomology in Homotopy Type Theory. Master’s thesis, Carnegie613

Mellon University, 2015.614

12 Evan Cavallo and Robert Harper. Higher Inductive Types in Cubical Computational Type615

Theory. Proceedings of the ACM on Programming Languages, 3(POPL):1:1–1:27, January616

2019. doi:10.1145/3290314.617

13 J. Daniel Christensen and Luis Scoccola. The Hurewicz theorem in Homotopy Type Theory,618

2020. Preprint. URL: https://arxiv.org/abs/2007.05833, arXiv:2007.05833.619

14 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory:620

A Constructive Interpretation of the Univalence Axiom. In Tarmo Uustalu, editor, 21st621

International Conference on Types for Proofs and Programs (TYPES 2015), volume 69 of622

Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:34, Dagstuhl, Germany,623

2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.TYPES.2015.624

5.625

15 Thierry Coquand, Simon Huber, and Anders Mörtberg. On Higher Inductive Types in626

Cubical Type Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic627

in Computer Science, LICS 2018, pages 255–264, New York, NY, USA, 2018. ACM. doi:628

10.1145/3209108.3209197.629

16 Samuel Eilenberg and Norman Steenrod. Foundations of Algebraic Topology. Foundations of630

Algebraic Topology. Princeton University Press, 1952.631

17 Robert Graham. Synthetic Homology in Homotopy Type Theory, 2018. Preprint. URL:632

https://arxiv.org/abs/1706.01540, arXiv:1706.01540.633

https://doi.org/10.1145/3434293
https://doi.org/10.1145/3434293
https://doi.org/10.1145/3434293
https://doi.org/10.1017/S0305004108001783
http://arxiv.org/abs/1606.05916
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://github.com/HoTT/HoTT-Agda
https://doi.org/10.1145/3209108.3209188
https://doi.org/10.1145/3209108.3209150
http://dx.doi.org/10.2168/LMCS-12(2:7)2016
https://doi.org/10.2168/LMCS-12(2:7)2016
https://doi.org/10.2168/LMCS-12(2:7)2016
https://doi.org/10.2168/LMCS-12(2:7)2016
https://doi.org/10.1145/3290314
https://arxiv.org/abs/2007.05833
http://arxiv.org/abs/2007.05833
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.1145/3209108.3209197
https://arxiv.org/abs/1706.01540
http://arxiv.org/abs/1706.01540

G. Brunerie, A. Ljungström and A. Mörtberg 17

18 Elies Harington. Groupes de cohomologie en théorie des types univalente, 2020. Internship634

report, supervised by Thierry Coquand.635

19 Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002. URL: https://pi.636

math.cornell.edu/~hatcher/AT/AT.pdf.637

20 Jónathan Heras, Thierry Coquand, Anders Mörtberg, and Vincent Siles. Computing Persistent638

Homology Within Coq/SSReflect. ACM Transactions on Computational Logic, 14(4):1–26,639

2013. URL: http://doi.acm.org/10.1145/2528929, doi:10.1145/2528929.640

21 Jónathan Heras, Maxime Dénès, Gadea Mata, Anders Mörtberg, María Poza, and Vincent641

Siles. Towards a Certified Computation of Homology Groups for Digital Images. In Proceedings642

of the 4th International Conference on Computational Topology in Image Context, CTIC’12,643

pages 49–57, Berlin, Heidelberg, 2012. Springer-Verlag. doi:10.1007/978-3-642-30238-1_6.644

22 Kuen-Bang Hou (Favonia), Eric Finster, Daniel R. Licata, and Peter LeFanu Lumsdaine. A645

Mechanization of the Blakers-Massey Connectivity Theorem in Homotopy Type Theory. In646

Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS647

’16, pages 565–574, New York, NY, USA, 2016. ACM. doi:10.1145/2933575.2934545.648

23 Kuen-Bang Hou (Favonia) and Michael Shulman. The Seifert-van Kampen Theorem in649

Homotopy Type Theory. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL650

Annual Conference on Computer Science Logic (CSL 2016), volume 62 of Leibniz International651

Proceedings in Informatics (LIPIcs), pages 22:1–22:16, Dagstuhl, Germany, 2016. Schloss652

Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2016.22.653

24 Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The Simplicial Model of Univalent Foun-654

dations (after Voevodsky), June 2016. Preprint. URL: https://arxiv.org/abs/1211.2851,655

arXiv:1211.2851.656

25 Daniel R. Licata and Guillaume Brunerie. A Cubical Approach to Synthetic Homotopy657

Theory. In Proceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic in Computer658

Science, LICS ’15, pages 92–103, Washington, DC, USA, 2015. IEEE Computer Society.659

doi:10.1109/LICS.2015.19.660

26 Daniel R. Licata and Eric Finster. Eilenberg-MacLane Spaces in Homotopy Type Theory.661

In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on662

Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on663

Logic in Computer Science (LICS), CSL-LICS ’14, New York, NY, USA, 2014. Association for664

Computing Machinery. doi:10.1145/2603088.2603153.665

27 Daniel R. Licata and Michael Shulman. Calculating the Fundamental Group of the Circle666

in Homotopy Type Theory. In Proceedings of the 2013 28th Annual ACM/IEEE Symposium667

on Logic in Computer Science, LICS ’13, pages 223–232, Washington, DC, USA, 2013. IEEE668

Computer Society. doi:10.1109/LICS.2013.28.669

28 Axel Ljungström. Computing Cohomology in Cubical Agda. Master’s thesis, Stockholm670

University, 2020.671

29 Per Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In H. E. Rose and J. C.672

Shepherdson, editors, Logic Colloquium ’73, volume 80 of Studies in Logic and the Foundations673

of Mathematics, pages 73–118. North-Holland, 1975. doi:10.1016/S0049-237X(08)71945-1.674

30 Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Bibliopolis,675

1984.676

31 Anders Mörtberg and Loïc Pujet. Cubical Synthetic Homotopy Theory. In Proceedings of677

the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP678

2020, pages 158–171, New York, NY, USA, 2020. Association for Computing Machinery.679

doi:10.1145/3372885.3373825.680

32 Zesen Qian. Towards Eilenberg-MacLane Spaces in Cubical Type Theory. Master’s thesis,681

Carnegie Mellon University, 2019.682

33 Michael Shulman. Cohomology, 2013. post on the Homotopy Type Theory blog: http:683

//homotopytypetheory.org/2013/07/24/.684

https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
http://doi.acm.org/10.1145/2528929
https://doi.org/10.1145/2528929
https://doi.org/10.1007/978-3-642-30238-1_6
https://doi.org/10.1145/2933575.2934545
https://doi.org/10.4230/LIPIcs.CSL.2016.22
https://arxiv.org/abs/1211.2851
http://arxiv.org/abs/1211.2851
https://doi.org/10.1109/LICS.2015.19
https://doi.org/10.1145/2603088.2603153
https://doi.org/10.1109/LICS.2013.28
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1145/3372885.3373825
http://homotopytypetheory.org/2013/07/24/
http://homotopytypetheory.org/2013/07/24/
http://homotopytypetheory.org/2013/07/24/

18 Synthetic Cohomology Theory in Cubical Agda

34 Kristina Sojakova. The Equivalence of the Torus and the Product of Two Circles in Homotopy685

Type Theory. ACM Transactions on Computational Logic, 17(4):29:1–29:19, November 2016.686

doi:10.1145/2992783.687

35 The Agda Development Team. The Agda Programming Language, 2021. URL: http://wiki.688

portal.chalmers.se/agda/pmwiki.php.689

36 The Coq Development Team. The Coq Proof Assistant, 2021. URL: https://www.coq.inria.690

fr.691

37 The RedPRL Development Team. The cooltt proof assistant, 2021. URL: https://github.692

com/RedPRL/cooltt/.693

38 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of694

Mathematics. Self-published, 2013. URL: https://homotopytypetheory.org/book/.695

39 Floris van Doorn. On the Formalization of Higher Inductive Types and Synthetic Homotopy696

Theory. PhD thesis, University of Nottingham, May 2018. URL: https://arxiv.org/abs/697

1808.10690.698

40 Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical Agda: A Dependently Typed699

Programming Language with Univalence and Higher Inductive Types. Proceedings of the ACM700

on Programming Languages, 3(ICFP):87:1–87:29, August 2019. doi:10.1145/3341691.701

41 Vladimir Voevodsky. The equivalence axiom and univalent models of type theory, February702

2010. Notes from a talk at Carnegie Mellon University. URL: http://www.math.ias.edu/703

vladimir/files/CMU_talk.pdf.704

42 Vladimir Voevodsky. An experimental library of formalized mathematics based on the705

univalent foundations. Mathematical Structures in Computer Science, 25(5):1278–1294, 2015.706

doi:10.1017/S0960129514000577.707

A Proofs708

This appendix contains proofs for the results in the paper. Everything has been formalized in709

Cubical Agda, and we refer the interested reader to the formalized code for technical details.710

A.1 Proofs for Section 3711

Proof of Lemma 8. The proof proceeds by induction: first on n and then on m for the case712

n = 1. For n = m = 1, we define the map713

f : (z : S1 × S1)→ P z714

f (x , base) = f l x715

f (base , loop i) = (p ·’ cong fr loop ·’ p -1) i716

f (loop i , loop j) = Q i j717
718

where Q is given by the fact that P is a set. Here _·’_ is the dependent version of _·_719

for PathP (over _·_). The left path is just refl and the right path is easy to construct by720

circle induction. In particular, we let right ∗S1 = p -1. Thus p ≡ left ∗S1 · (right ∗S1) -1 is721

immediate by construction.722

For the inductive step, we focus on Sn+1 × Sm and omit the proof for S1 × Sm+1 since723

it is close to identical. We begin by defining f for north and south.724

f (north , y) = f r y725

f (south , y) = transport (λ i→ P (merid ∗Sm i , y)) (f r y)726
727

Note that already here, we have the right path; it holds by refl. The left path is constructed728

in parallel with f. Thus far, we can only define it for north and south. This is easily done so729

that p ≡ left ∗Sn+1 · (right ∗Sm) -1 is satisfied.730

https://doi.org/10.1145/2992783
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php
https://www.coq.inria.fr
https://www.coq.inria.fr
https://www.coq.inria.fr
https://github.com/RedPRL/cooltt/
https://github.com/RedPRL/cooltt/
https://github.com/RedPRL/cooltt/
https://homotopytypetheory.org/book/
https://arxiv.org/abs/1808.10690
https://arxiv.org/abs/1808.10690
https://arxiv.org/abs/1808.10690
https://doi.org/10.1145/3341691
http://www.math.ias.edu/vladimir/files/CMU_talk.pdf
http://www.math.ias.edu/vladimir/files/CMU_talk.pdf
http://www.math.ias.edu/vladimir/files/CMU_talk.pdf
https://doi.org/10.1017/S0960129514000577

G. Brunerie, A. Ljungström and A. Mörtberg 19

We now need to define f (merid x i , y). That is, we need to provide a dependent path731

from f r y to732

transport (λ i→ P (merid ∗Sm i , y)) (f r y)733

over P (merid x i , y) for (x , y) : Sn × Sm. The type of such paths is an (n + m − 2)-type734

and we may apply the inductive hypothesis. This means that we only need to construct735

it for (∗Sn , y) and (x , ∗Sm) and prove that these two constructions agree on (∗Sn , ∗Sm).736

Furthermore, since it remains to construct left (merid x i), this construction has to respect737

the definition of left north and left south. This follows in a straightforward manner from the738

left and right paths given by the inductive hypothesis. We omit the construction—it is not739

difficult, but rather technical. ◀740

Proof of Theorem 9. The case n = 0 is just Z ≃ Ω S1, so we focus on the case when n ≥ 1.741

We proceed by the encode-decode method and define a fibration Code : Kn+1 → n-Type.742

Since n-Type is (n + 1)-truncated [38, Theorem 7.1.11], we may define it by truncation743

elimination.744

Code | north | = Kn745

Code | south | = Kn746

Code |merid x i | = ua (λ y → |x |+k y) i747
748

The last case uses the fact that for any x : Kn, the map λ y → x+k y is an equivalence. As749

usual, we define750

encode : (x : Kn+1)→ 0k ≡ x→ Code x751

encode x p = subst Code p 0k752
753

The inverse is defined by754

decode : (x : Kn+1)→ Code x→ 0k ≡ x755

decode | north | = σn756

decode | south | = λ |x | → cong |_ | (merid x)757

decode |merid y i | = . . .758
759

For the missing case we need to prove that the function760

transport (λ i→ Code |merid y i | → 0k ≡ |merid y i |) σn761

takes |x | to cong |_ | (merid x). By the transport laws for functions and ua, we can deduce762

that this function applied to |x | yields the following (up to a path):763

σn (-k | y | +k |x |) · cong |_ | (merid y)764

It follows easily from Lemma 8 that σn is a homomorphism in the sense that σn (x+k y) ≡ σn x · σn y.765

Furthermore, as +k is commutative, we obtain:766

σn |x | · (σn | y |) -1 · cong |_ | (merid y)767

Unfolding σn |x | and σn | y | then yields a composition of paths which simplifies to768

cong |_ | (merid x) as desired.769

Proving that encode | north | and decode | north | are mutually inverse is very direct. By770

generalizing to any x : Kn+1, decode x (encode x p) ≡ p follows by path induction. By the771

transport law for ua, the other direction amounts to showing (| y | +k 0k) -k 0k ≡ | y |, which772

clearly holds. ◀773

20 Synthetic Cohomology Theory in Cubical Agda

A.2 Proofs for Section 4774

To prove the results in Section 4, we introduce a notion of homogeneous types.775

▶ Definition 25. We say that two pointed types (A , a0) and (B , b0) are equivalent if there is776

an equivalence f : A ≃ B such that f a0 ≡ b0. We denote this by (A , a0) ≃ ∗(B , b0).777

▶ Definition 26. A type A is homogeneous if for any x, y : A, we have that (A , x)≃ ∗(A , y)778

or, equivalently, (A , x) ≡ (A , y).779

The following very useful lemma is due to Evan Cavallo.780

▶ Lemma 27. Let A and B be pointed types with B homogeneous and let (f , p), (g , q) :781

A→∗ B be pointed functions. If f ≡ g, then (f , p) ≡ (g , q).782

Proof. Let A and B be pointed by a0 and b0 respectively. By assumption, we have a783

homotopy h : (x : A) → f x ≡ g x. We construct a path r : b0 ≡ b0 by r = p -1 ·h a0 · q.784

Define P : (B , b0) ≡ Type∗(B , b0) by P = λ i → (B , r i). We get P ≡ refl as an easy785

consequence of the homogeneity of B. Hence, instead of proving that (f , p) ≡ (g , q), it786

is enough to prove that transport (λ i → A →∗ P i) (f , p) ≡ (g , q). The transport only787

acts on p and q, so fst (transport (λ i→ A→∗ P i) (f , p)) ≡ g holds by h. For the second788

components, we are reduced to proving that p · r ≡ h a0 · q. This is true immediately by789

construction of r. ◀790

The following lemma is proved in a similar manner.791

▶ Lemma 28. Let A and B be two pointed types with B homogeneous. The type A→∗ B is792

homogeneous.793

▶ Lemma 29. Kn is homogeneous.794

Proof. Let x : Kn. We show that (Kn , 0k)≃ ∗(Kn , x). The function λ y → x +k y is an795

equivalence. Clearly, f 0k ≡ x, and thus we are done. ◀796

Proof of Lemma 13. When m = 0, the result is obvious, so assume m ≥ 1. We want to show797

that Km →∗ Kn+m is an n-type. This is equivalent to proving that Ωn+1 (Km →∗ Kn+m) is798

contractible. We get799

Ωn+1 (Km →∗ Kn+m)≃ (Km →∗ Ωn+1 Kn+m)≃ (Km →∗ Km−1)800

Hence, we only need to verify that Km →∗ Km−1 is contractible.801

To prove this, we choose c = ((λx → 0k) , refl) as the center of contraction. Let (f , p) be802

another pointed function. We want to show that c = (f , p). Since Km−1 is homogeneous, it803

is enough, by Lemma 27 and function extensionality, to show that f |x | ≡ 0k for x : Sm.804

This is an (m− 2)-type, so by sphere elimination, it is enough to show that f 0k ≡ 0k. Since805

f is assumed to be pointed, we are done. ◀806

Proof of Lemma 14. Immediate corollary of Lemmas 27–29. ◀807

Proof of Lemma 16. We show that λ y → σn+m(x ⌣k y) and λ y → cong (⌣k y) (σn x)808

are equal as pointed functions of type Km →∗ Ω Kn+m+1. Since Ω Kn+m+1≃Kn+m, this is809

an n-type by Lemma 13, and we may assume that x is on the form | a | for a : Sn. Applying810

G. Brunerie, A. Ljungström and A. Mörtberg 21

Lemma 14, we only need to show that σn+m(| a |⌣k y) ≡ cong (⌣k y) (σn | a |) for y : Km.811

We have812

cong (⌣k y) (σn | a |)813

≡ cong (λx → |x |⌣k y) (merid a) · cong (λx → |x |⌣k y) (merid ∗Sn) -1
814

def≡ σn+m(| a |⌣k y) · σn+m(0k ⌣k y) -1
815

≡ σn+m(| a |⌣k y) ◀816
817

For graded commutativity, we need the following two lemmas.818

▶ Lemma 30. Let A be a pointed type and p : Ω2 A. We have that819

(λ i j → p j i) ≡ p -1
820

(λ i j → p (∼ i) (∼ j)) ≡ p821

(λ i j → p i (∼ j)) ≡ p -1
822

Proof. We begin by proving that (λ i j → p j i) ≡ p -1. We generalize the lemma. Let823

q : x ≡ x and p : refl ≡ q for some x : A. The key to the proof is to define a suitable path824

B : I→ Type such that A = PathP (λ i→ B i) (λ i j → p j i) (p -1) is well-typed. We define825

B by826

B i = PathP (λ j → x ≡ q (i ∨ j)) (λ k → q (i ∧ k)) refl827

By path induction on p, A holds by refl. Fixing q = refl, A reduces to (λ i j → p j i) ≡ p -1,828

and we are done.829

Verifying that (λ i j → p (∼ i) (∼ j)) ≡ p is done in the exact same way, but this time830

with B : I→ Type defined by B i = (λ j → q (i ∨ (∼ j))) ≡ (λ j → q (i ∧ j)).831

Finally, (λ i j → p i (∼ j)) ≡ p -1 is given by instantiating the previous equality with832

p = p -1. ◀833

▶ Lemma 31. Let p : Ω Kn. We have cong -k p ≡ p -1
834

Proof. We prove the lemma for n ≥ 2. When n = 0, it is trivial and when n = 1, it follows835

in an analogous manner. The lemma is easily proved using the encode-decode method. We836

define a function f : (x : Kn) → 0k ≡ x → x ≡ 0k by truncation elimination and sphere837

induction on x. We let838

f | north | = cong -k839

f | south | = λ p→ (cong |_ |(merid ∗Sn−1) -1 · cong -k p)840

f |merid a i | = . . .841
842

The merid a case boils down to proving that for any p : 0k ≡ | south |, we have that843

transport (λ i→ |merid a i | ≡ 0k)844

(f | north | (transport(λ i→ 0k ≡ |merid a (∼ i) |) p)845
846

or, equivalently,847

cong |_ | (merid a) -1 · cong -k p · (cong |_ |(merid a · (merid ∗Sn−1) -1)) (2)848
849

is equal to f | south | p. Swapping the last two components in (2) using the fact that path850

composition in Ω Kn is commutative, we may cancel out merid a, and we are done. Thus, f851

is defined.852

We now have that that f x p ≡ p -1 for any x : Kn and p : 0k ≡ x by path induction on p.853

In particular, f | north | p def≡ cong -k p ≡ p -1 for p : Ω Kn. ◀854

22 Synthetic Cohomology Theory in Cubical Agda

Proof of Proposition 18. When n or m is equal to 0, the proof is easy. We sketch the855

argument for n,m ≥ 1. Let y : Km. The goal is to prove that λx → x ⌣k y and856

λx → -k
m·n(y ⌣k x) are equal as pointed functions. We apply Lemmas 13 and 14 and we857

are reduced to showing that | a |⌣k y ≡ -k
m·n(y ⌣k | a |), ignoring pointedness, for a : Sn.858

We temporarily fix a and now abstract over y instead. We generalize the problem to that859

of proving that for all y : Km, we have that λ a → | a | ⌣k y and λ a → -k
m·n(y ⌣k | a |)860

are equal, now seen as pointed functions of type Sn →∗ Kn+m. Since this is equivalent to861

Ωn Kn+m ≃ Km, this is an m-type, and we may thus let y = | b | for some b : Sm. We may862

again ignore pointedness at this stage, by Lemma 14, and we are thus reduced to proving863

that | a |⌣k | b | ≡ -k
m·n(| b |⌣k | a |) for a : Sn, b : Sm.864

The case when n = m = 1 boils down to proving that

λ i j → | loop i |⌣k | loop j | ≡ λ i j → -k (| loop j |⌣k | loop i |)

viewed as elements of Ω2 K2 (here, we are ignoring transports and coherence paths). This is865

immediate by Lemmas 30 and 31. In Cubical Agda, we can also verify this computationally866

by noting that the equivalence Ω2 K2 ≃ Z sends both paths to 1.867

We now do the same thing for the case n,m ≥ 2 (the case n = 1 and m ≥ 1 is close
to identical). We may assume as our inductive hypothesis that the statement holds for all
n′,m′ : N such that n′ +m′ < n+m. This time, the proof boils down to showing that

λ i j → |merid a i |⌣k |merid b j | ≡ λ i j → -k
m·n (|merid b j |⌣k |merid a i |)

again ignoring coherence paths and transports. Here, a : Sn−1 and b : Sm−1. We fix i and j868

and give a rough outline of the argument. We have869

|merid a i |⌣k |merid b j | ≡ σn+m−1(| a |⌣k |merid b j |) i870

≡ -k
m·(n−1) (σn+m−1(|merid b j |⌣k | a |) i)871

≡ -k
m·(n−1) (σn+m−1(σn+m−2(| b |⌣k | a |) j) i)872

≡ -k
m·(n−1)-k

(n−1)·(m−1) (σn+m−1(σn+m−2(| a |⌣k | b |) j) i)873

≡ -k
n+1 (σn+m−1(σn+m−2(| a |⌣k | b |) j) i)874

≡ -k
n+1 (σn+m−1(|merid a j |⌣k | b |) i)875

≡ -k
n+1-k

(m−1)·n (σn+m−1(| b |⌣k |merid a j |) i)876

≡ -k
n+1-k

(m−1)·n (|merid b i |⌣k |merid a j |)877

≡ -k
m·n+1 (|merid b i |⌣k |merid a j |)878

≡ -k
m·n (|merid b j |⌣k |merid a i |)879

880

The last equality comes from Lemmas 31 and 30. The rest of the steps are just unfoldings881

of the definition of ⌣k, applications of the the inductive hypothesis and implicit uses of882

Lemma 30 and the fact that σn(-k x) ≡ cong -k (σn x).883

We note that although this informal argument is easy, the formal version is much more884

technical since we also have to verify that the proof sketched above respects the boundary885

constraints (i.e. our choices of paths for the point constructors). As we also need to express886

many of these equalities using PathP or transport (over paths in N), things become even more887

complicated. ◀888

A.3 Proofs for Section 5889

The trivial cohomology groups of spheres are easily handled in a similar manner to the890

non-trivial ones.891

G. Brunerie, A. Ljungström and A. Mörtberg 23

▶ Proposition 32. Hn(Sm) ≃ 1 for n,m ≥ 1 with n ̸= m.892

Proof. By Suspension (see Appendix B) and induction on n and m, it suffices to prove the893

statement for the cases (a) n = 1, m ≥ 2 and (b) m = 1, n ≥ 2.894

For case (a), we note that K1 ≃ ∥K1 ∥m−1 since K1 is a 1-type and m ≥ 2. Let895

| f | : ∥Sm → ∥K1 ∥m−1 ∥0. We prove that | f | ≡ 0h. This is a proposition, so by 0-896

connectedness of K1, we may assume that f base ≡ | 0k |. But by the definition of (m− 1)-897

truncations, any map f : Sm → ∥K1 ∥m−1 is constant. Hence | f | ≡ 0h and consequently898

H1(Sm) ≃ ∥Sm → ∥K1 ∥m−1 ∥0 is contractible.899

For case (b), we get, in the same way as in the proof of Proposition 19, that900

∥S1 → Kn ∥0 ≃ ∥Kn × Ω Kn ∥0 ≃ ∥Kn ∥0 × ∥Kn−1 ∥0901

This type is contractible since Kn is 0-connected for n > 0. ◀902

We note that part (a) of the proof above can be generalized for any n,m ≥ 1 such that903

n < m. This gives a short and computationally efficient proof of this special case.904

Proof of Lemma 23. We induct on n (assuming n ≥ 0 as the case n < 0 is completely sym-905

metric). When n is 0 or 1, the statement is trivial. The crucial case is when n = 2. We need to906

show that | (0k , loop · loop) | ≡ | (0k , refl) |. Naturally, their first components agree. However,907

we do not prove this by refl. Instead we prove that 0k ≡ 0k by loop. By the characterization908

of paths over dependent sums, we need to show that cong2 +k loop loop ≡ loop · loop, which909

is immediate by construction.910

It is not a priori obvious how to define the inductive step. The goal is to define an911

operation ⋄ on ∥
∑

x:K1
(x +k x ≡ 0k) ∥0 such that for p, q : Ω K1, we have912

| (0k , p) | ⋄ | (0k , q) | ≡ | (0k , p · q) | (3)913
914

Suppose we have two terms | (| a | , p) | and | (| b | , q) | of type ∥
∑

x:K1
(x +k x ≡ 0k) ∥0. Since

this type is a set, we may apply Lemma 8 in order to define ⋄. We define

| (| a | , p) | ⋄l | (0k , q) | = | (| a | , p · q) | | (0k , p) | ⋄r | (| b | , q) | = | (| b | , q · p) |

To complete the definition of ⋄, Lemma 8 requires us to prove that | (0k , p · q) | ≡ | (0k , q · p) |.915

This follows immediately by commutativity of Ω K1. The fact that ⋄ satisfies (3) follows from916

the left path in Lemma 8. The inductive step is now easy to complete. We have917

| (0k , loopn+2) | ≡ | (0k , loopn) | ⋄ | (0k , loop2) | ≡ | (0k , loopn) | ⋄ | (0k , refl) | ≡ | (0k , loopn) |918

and we are done by the inductive hypothesis. ◀919

B The Eilenberg-Steenrod axioms for cohomology920

A common approach in classical mathematics is to work abstractly with cohomology using921

the Eilenberg-Steenrod axioms [16]. The goal of this appendix is to verify that our definition922

of cohomology is a well-behaved cohomology theory and satisfies a variation of these axioms.923

To this end we can also define a reduced version which we denote by H̃n(A). This924

cohomology theory is often preferred in classical algebraic topology as it avoids some925

exceptional cases, which simplify statements [19]. Given a pointed type A let926

H̃n(A) = ∥A→∗ Kn ∥0927

24 Synthetic Cohomology Theory in Cubical Agda

It is easy to prove that the following map is an equivalence for n ≥ 1.928

φ : Hn(A)→ H̃n(A)929

φ | f | = |λx → (f x -k f ∗A , rCancelk (f ∗A)) |930
931

Using this equivalence, the group structure on H̃n(A) can be induced from the group structure932

on Hn(A) using the SIP. One may also define it directly. This is more subtle, as the group933

laws also have to respect the pointedness proofs, but it turns out to be straightforward with934

our definition of the group structure on Kn. In the formalization, this is how the group935

structure on H̃n(A) is defined. Interestingly, in a previous attempt to give a direct definition936

of this group structure using the definition of +k from [5, Prop. 5.1.4], it was difficult to get937

Cubical Agda to typecheck in reasonable time without using the abstract keyword.938

B.1 The axioms in HoTT/UF939

The Eilenberg-Steenrod axioms have been studied previously in HoTT/UF by [11, 8, 39]. To940

state the Exactness axiom, we need to introduce cofibers (also known as mapping cones).941

▶ Definition 33 (Cofiber). Given f : A → B, we define the cofiber of f , denoted coFib f ,942

as the pushout of the span 1
λ x → ∗1←−−−−−− A

f−→ B. We write cfcod for the right inclusion943

inr : B → coFib f .944

With this, we can state the Eilenberg-Steenrod axioms:945

▶ Definition 34. A family of contravariant functors En : Type∗ → AbGrp indexed by n : Z946

is an ordinary (reduced) cohomology theory if the following axioms are satisfied.947

Suspension: For A : Type∗, there is a group isomorphism En A ∼= En+1 (Susp A).948

Furthermore, this isomorphism is natural with respect to Susp.949

Exactness: For f : A→∗ B there is an exact sequence:950

En (coFib f) En cfcod−−−−−→ En B
En f−−−→ En A951

Dimension: For n : Z with n ̸= 0, En S0 is trivial.952

Here, “ordinary” refers to the fact that En satisfies the Dimension axiom. Let f∗ = En f953

and cfcod∗ = En cfcod. The sequence in the Exactness axiom is exact if the kernel of f∗
954

(the elements of En B that get mapped to 0 : En A) is equal to the image of cfcod∗. As955

En A is a set, the statement “b is in the kernel of f∗” is a proposition. Univalence then956

implies that Exactness follows if all b : En B are in the kernel of f∗ iff they are in the image957

of cfcod∗. One often also consider a further axiom:958

Additivity: For I : Type and a family of types Ai with i : I, we have an isomorphism:959

En
(∨

i:I
Ai

)
∼= ((i : I)→ En Ai)960

Proving this typically requires that the index set I satisfies the set theoretic axiom of choice [8].961

As we are interested in computations, we do not rely on this general form. Instead, the962

following version is sufficient for all examples we consider:963

Binary Additivity: For n : Z and A,B : Type∗ the following groups are isomorphic:964

En (A∨B) ∼= (En A × En B)965

G. Brunerie, A. Ljungström and A. Mörtberg 25

B.2 Verifying the axioms966

It is possible to directly show that H̃n satisfies the axioms. However, it turns out that when967

working formally, unreduced cohomology Hn is often easier to work with, as it avoids pointed968

types. The only caveat is that Exactness fails for H0. We therefore show that the axioms969

hold for the following equivalent cohomology theory:970

Ĥn(A) =


1 if n < 0
H̃0(A) if n = 0
Hn(A) if n > 0

971

As Ĥn(A) is isomorphic to H̃n(A), the SIP implies that it suffices to show that the axioms972

hold for Ĥn(A) in order to show that H̃n(A) also satisfies them.973

▶ Proposition 35. Ĥn is an ordinary reduced cohomology theory.974

Proof (sketch). We verify the axioms, omitting trivial cases and details to the formalization.975

Suspension: The proof is almost identical for n = 0 and n > 0, so we focus on the latter.976

Given f : SuspA→ Kn+1 we get f ′ : A→ Ω Kn+1 sending a : A to977

p -1 · cong (λx → f x -k f 0k) (merid a · (merid ∗A) -1) · p978

where p = rCancelk (f 0k). By pointwise application of Theorem 9, this gives us a map979

φ : Hn+1(Susp A) → Hn(A), sending | f | to |λx → σ -1
n (f ′ x) |. The inverse is defined980

analogously. The fact that this is an isomorphism is technical but straightforward using that981

σn is an equivalence.982

When n = −1, we need to prove that H̃0 (Susp A) is contractible for pointed types A.983

This is immediate: any function f : SuspA→ Z is uniquely determined by f north because984

f south ≡ f north must hold by merid ∗A, and cong f (merid x) ≡ cong f (merid y) holds for985

any x, y : A since Z is a set.986

Naturality of these isomorphisms follows immediately by construction. It even holds987

definitionally modulo induction on n, truncation elimination and pattern matching on Susp A.988

Exactness: This proof is also almost identical for n = 0 and n > 0, so we focus on the989

latter again. It suffices to check that all | g | : Hn(B) are in the kernel of f∗ iff they are in990

the image of cfcod∗. For the left to right direction, assume that we have p′ : f∗ | g | ≡ 0h. We991

are proving a proposition, and we may thus apply the induction principle for (set) truncated992

paths to p′. This gives a path p : g ◦ f ≡ λx→ 0k and we define h : coFib f → Kn by:993

h (inl ∗1) = 0k994

h (cfcod x) = g x995

h (push a i) = p (∼ i) a996
997

This satisfies cfcod∗ |h | ≡ | g | definitionally and hence | g | is in the image of cfcod∗. The998

other direction is proved similarly.999

Dimension: The only non-trivial case is n > 0. It suffices to prove that for | f | : Hn(S0),1000

we have | f | ≡ 0h. Since Kn is 0-connected in this case and | f | ≡ 0h is a proposition, we may1001

assume that f true ≡ f false ≡ 0k and thereby we are done by function extensionality. ◀1002

The binary additivity axiom also holds.1003

▶ Proposition 36. Ĥn satisfies Binary Additivity.1004

26 Synthetic Cohomology Theory in Cubical Agda

Proof. For n = 0, the intuition is that H̃0(A∨B) consists of pairs of functions f : A→ Z1005

and g : B → Z with a path p : f ∗A ≡ g ∗A and a proof of pointedness q : f ∗A ≡ 0. The1006

path q tells us that f is pointed, and by composition with p we may also deduce that g is1007

pointed. Hence, we get a homomorphism ϕ : H̃0(A∨B)→ H̃0(A) × H̃0(B). We can easily1008

deduce that ϕ is an isomorphism from the fact that Z is a set, and thus ϕ preserves p and q1009

trivially.1010

When n ≥ 1 we can define a homomorphism by:1011

ϕ : Hn(A∨B)→ Hn(A) × Hn(B)1012

ϕ | f | = (| f ◦ inl | , | f ◦ inr |)1013
1014

This map simply forgets that f (inl ∗A) ≡ f (inr ∗B) holds. The topological intuition here is1015

that this path always can be contracted by continuously varying the choice of points f(inl ∗A)1016

and f(inr ∗B). We define the inverse by1017

ψ : Hn(A) × Hn(B)→ Hn(A∨B)1018

ψ (| f | , | g |) = | f ∨ g |1019
1020

where f ∨ g : A∨B → Kn is defined by1021

(f ∨ g) (inlx) = f x +k g ∗B1022

(f ∨ g) (inr x) = f ∗A +k g x1023

(f ∨ g) (push ∗1 i) = f ∗A +k g ∗B1024
1025

The fact that ϕ (ψ x) ≡ x holds is easy—since the statement is a proposition, we may assume,1026

for any pair of functions f : A→ Kn and g : B → Kn, that f ∗A ≡ g ∗B ≡ 0k, using the1027

fact that Kn is 0-connected.1028

For the other direction, again due to 0-connectedness, we may assume that we have a1029

path ℓ : 0k ≡ f (inl ∗A). Under this assumption, we prove that f c ≡ ((f ◦ inl)∨ (f ◦ inr)) c by1030

induction on c : A∨B. For c = inl a, we need to prove that f (inl a) ≡ f (inl a) +k f (inr ∗B).1031

We use the following construction1032

P : (x : Kn) {y z : Kn} → 0k ≡ y → y ≡ z → x ≡ x +k z1033

P x p q = (rUnitk x) -1 · (λ i→ x +k p i) · (λ i→ x +k q i)1034
1035

and are done by P (f (inl a)) ℓ (cong f (push ∗1)).1036

For c = inr b, the goal is f (inr b) ≡ f (inl ∗A) +k f (inr b). We define1037

Q : (x : Kn) {y : Kn} → 0k ≡ y → x ≡ y +k x1038

Q x p = (lUnitk x) -1 · (λ i→ p i +k x)1039
1040

and are done by Q (f (inr b)) ℓ.1041

For c = push ∗1 i, we need to construct a filler of type1042

PathP (λ i→ P’ i ≡ Q’ i) (cong f (push ∗1)) refl (4)1043
1044

where P’ = P (f (inl ∗A)) ℓ (cong f (push ∗1)) and Q’ = Q (f (inr ∗B)) ℓ. In order to do this,1045

we generalize and ask that for arbitrary x, y : Kn and paths p : 0k ≡ x and q : x ≡ y, there1046

is a filler of the square1047

□p,q : PathP (λ i→ P x p q i ≡ Q y p i) q refl1048

G. Brunerie, A. Ljungström and A. Mörtberg 27

By path induction on p and q, we are done if we can show that P 0k refl refl ≡ Q 0k refl ≡ refl.1049

Since p ≡ q ≡ refl, the only non-trivial components of P 0k refl refl and Q 0k refl are1050

(rUnitk 0k) -1 and (lUnitk 0k) -1 respectively. As remarked in Section 3, these are both1051

(definitionally) equal to refl, and we are done as □ℓ,cong f (push ∗1) is the filler we needed for1052

(4). ◀1053

The axioms are hence satisfied by Hn for n > 0, H̃n for n ≥ 0, and Ĥn for all n : Z. This1054

means that they are all well-behaved cohomology theories and we can now do some concrete1055

characterizations using the axioms.1056

B.3 The Mayer-Vietoris sequence1057

The Eilenberg-Steenrod axioms are enough for many fundamental constructions in cohomology1058

theory. One important example is the Mayer-Vietoris sequence.1059

▶ Theorem 37 (Mayer-Vietoris sequence). Let En be a cohomology theory and D be the1060

pushout of the span A
f← C

g→ B. There is an exact sequence1061

· · · → En−1 C → En D → En A×En B → En C → . . .1062

There are many variants of Theorem 37. Cavallo constructed the sequence for general1063

reduced cohomology directly from the Eilenberg-Steenrod axioms in [11], whereas Brunerie1064

constructed a version with alternating reduced and unreduced groups for a cohomology1065

theory similar to ours in [5, Prop. 5.2.2].1066

Many elementary results about cohomology groups can be deduced from this sequence.1067

For instance, by viewing Sn+1 as the pushout of the span 1 ← Sn → 1 and noting that1068

H̃n(1) ∼= 1, we get exact sequences1069

1 −→ H̃n(Sn) dn+1−−−→ H̃n+1(Sn+1)→ 11070

where dn+1 is the map from En C to En+1 D in Theorem 37. It is easy to prove that1071

H̃0(S0) ∼= Z and get a stable sequence1072

Z ∼= H̃1(S1) ∼= H1(S1) ∼= H̃2(S2) ∼= H2(S2) ∼= . . .1073
1074

With computations in Cubical Agda in mind, we prefer not to use proofs such as this1075

one. The problem with proofs from exact sequences is that many constructions become1076

indirect. For instance, the inverse of dn is induced by the proofs of the exactness properties1077

of the Mayer-Vietoris sequence instead of being constructed directly. We have formalized an1078

unreduced version of the sequence, but have mostly been able to avoid it and instead give1079

direct characterizations of most cohomology groups that we consider.1080

C Benchmarking computations with the cohomology groups1081

For every equivalence ϕ : Hn(A) ≃ G in Section 5, two benchmarks have been run in1082

Cubical Agda. Test 1 concerns the behavior of ϕ and ϕ -1. The aim was to check whether1083

ϕ (ϕ -1 g) ≡ g is proved by refl for different values of g : G. Test 2 concerns the behavior of1084

+h and the aim was to check whether ϕ (ϕ -1 g1 +h ϕ
-1 g2) ≡ g1 +G g2 for g1, g2 : G.1085

For an example of how the tests were performed, let ϕ : H1(K 2) ≃ Z. We then measure1086

how long it takes to typecheck that Test 2 is proved by refl when instantiated with concrete1087

28 Synthetic Cohomology Theory in Cubical Agda

numbers. In the example below we use 1 and 2, and the test took 22ms to terminate, which1088

we record in a comment.1089

test : ϕ (ϕ−1 1 +h ϕ−1 2) ≡ 3 –- 22ms1090

test = refl1091

As we expect similar goals to appear in future formalizations, the tests were run on a1092

regular laptop with 1.60GHz Intel processor and 16GB RAM. The group elements in the1093

tests were made up from integers between -5 and 5. Results of these tests are summarized in1094

the table below. The failed computations, marked with ✗, were manually terminated after1095

10min. Details and exact timings can be found at https://github.com/agda/cubical/1096

blob/master/Cubical/Experiments/ZCohomology/Benchmarks.agda.

Type A Cohomology Group G Test 1 Test 2

S1 H1 Z ✓ ✓

S2 H2 Z ✓ ✓

S3 H3 Z ✓ ✗

S4 H4 Z ✗ ✗

T 2 H1 Z × Z ✓ ✓

H2 Z ✓ ✓

S2 ∨ S1 ∨ S1 H1 Z × Z ✓ ✓

H2 Z ✓ ✓

K 2 H1 Z ✓ ✓

H2 Z/2Z ✗ ✗

RP 2 H2 Z/2Z ✗ ✗

CP 2 H2 Z ✓ ✓

H4 Z ✗ ✗

1097

For most spaces considered here, Test 1 terminates in less than 0.2s. This is a considerable1098

improvement to prior attempts in [28] where the same calculations failed to terminate for1099

both H2(S2 ∨S1 ∨S1) and H2(T 2) (that formalization used +h from [5] and, for most1100

characterizations, the Mayer-Vietoris sequence). However, Test 1 fails to terminate for1101

H2(K 2), H2(RP 2) and H4(CP 2). After many optimizations, even ϕ 0h ≡ 0 can only be1102

verified computationally in Cubical Agda for RP 2 (the same test fails for K 2). This is not1103

as surprising as it may seem. For both spaces, ϕ attempts to compute the winding number1104

of a loop in ΩK1 which is constructed in terms of the complex proof that σ -1
2 : Ω K2 → K11105

is a homomorphism. For K 2, this construction also relies on the proof of Theorem 12.1106

Higher cohomology groups of spheres also appear to suffer from the same problems. For1107

ϕ : H3(S3) ≃ Z, Test 2 fails even for ϕ -1 0 +h ϕ
-1 0.1108

https://github.com/agda/cubical/blob/master/Cubical/Experiments/ZCohomology/Benchmarks.agda
https://github.com/agda/cubical/blob/master/Cubical/Experiments/ZCohomology/Benchmarks.agda
https://github.com/agda/cubical/blob/master/Cubical/Experiments/ZCohomology/Benchmarks.agda

	1 Introduction
	2 Homotopy Type Theory in Cubical Agda
	2.1 Important notions in darkgrayCubical darkgrayAgda
	2.2 Important concepts from HoTT/UF in darkgrayCubical darkgrayAgda
	2.3 Univalence

	3 Z-cohomology in Cubical Agda
	3.1 Eilenberg-MacLane spaces
	3.2 Group structure on Hn(A)

	4 The Cup Product and Cohomology Ring
	4.1 Defining the cup product in darkgrayCubical darkgrayAgda
	4.2 The cohomology ring

	5 Characterizing Z-cohomology Groups
	5.1 Spheres
	5.2 The torus
	5.3 The Klein bottle and real projective plane
	5.4 The complex projective plane

	6 Proving by computations in darkgrayCubical darkgrayAgda
	7 Conclusions
	7.1 Related and future work

	A Proofs
	A.1 Proofs for sec:cohomology
	A.2 Proofs for sec:cupproduct
	A.3 Proofs for sec:direct

	B The Eilenberg-Steenrod axioms for cohomology
	B.1 The axioms in HoTT/UF
	B.2 Verifying the axioms
	B.3 The Mayer-Vietoris sequence

	C Benchmarking computations with the cohomology groups

