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Abstract—In classical mathematics, a CW complex is a topo-
logical space which can be built up inductively by gluing together
cells of increasing dimension. Due to their good categorical
properties, CW complexes have become the main object of
interest in algebraic topology. Although their quasi-combinatorial
nature suggests that a constructive treatment is possible, there
seems to be little literature on the subject – perhaps because of
the important role played by the axiom of choice in the classical
theory of CW complexes.

In this paper, we present a synthetic and constructive account
of the theory of CW complexes in homotopy type theory. Most
notably, we prove a finitary version of the cellular approximation
theorem, which allows us to construct a theory of cellular
homology without needing the axiom of choice or relying on
a pre-existing notion of homology. We prove that our cellular
homology is functorial and that it satisfies a finitary version of
the Eilenberg-Steenrod axioms. Last but not least, we give a
constructive proof of the Hurewicz theorem for CW complexes,
which relates the first non-vanishing homotopy group of a
CW complex with the corresponding homology group. All key
theorems presented in this paper have been mechanised in
Cubical Agda.

I. INTRODUCTION

Homotopy type theory (HoTT) is an extension of inten-
sional type theory which treats types and equalities from a
homotopical perspective [1]. It provides a synthetic framework
for reasoning about spaces and their homotopy invariants, and
has been successfully used to formalise a number of results
from algebraic topology [2]. In this paper, we present a devel-
opment of the theory of CW complexes in HoTT, including
cornerstone results such as the cellular approximation theorem,
cellular homology, and the Hurewicz theorem.

A remarkable aspect of homotopy type theory is that it is
fully constructive by default. While it is possible to postulate
classical reasoning principles such as the law of excluded
middle or the axiom of choice, working in plain constructive
HoTT results in theorems that are strictly more general – in
particular, they become valid in every ∞-topos [3], [4]. Thus,
the developments presented in this paper effectively show that
cellular methods are available in this very general setting.

A. Outline and contributions

In Section II, we outline the basic definitions from HoTT
which we will need for our development, with special empha-
sis on homotopy pushouts and truncations.

In Section III, we develop our constructive theory of CW
complexes. Our main contributions are a construction of the

pushout of two cellular maps (Definition 10 and Proposi-
tion 11), and a constructive treatment of the cellular ap-
proximation theorem for maps and homotopies (Theorems 15
and 22). We also define various categories which, to a varying
degree, capture the idea of a cellular space in HoTT, and we
study the relations between these categories.

In Section IV, we apply our results to the construction of
homology theories for our categories of cellular spaces. We
associate homology groups to every CW complex, and we
show that this association is functorial and homotopy invariant
using our freshly proved cellular approximation theorems.
Finally, we verify that our homology functors satisfy the
Eilenberg–Steenrod axioms. We remark that most proofs and
constructions in this section can be interpreted in the setting of
cellular cohomology. We simply chose to focus on homology
because it constituted an open problem.

In Section V, we prove the Hurewicz theorem for our
homology theory. To this end, we prove a special case of
the so-called CW approximation theorem which shows that,
for CW complexes, the usual definition of an n-connected
type in HoTT coincides with the classical definition of an n-
connected CW complex (Corollary 48). We emphasise that
the approximation theorems that underlie this work are results
whose classical proofs tend to be inherently non-constructive.
We hope that our constructive proofs will interest also the
logician who is not necessarily well-versed in HoTT.

The main theorems and constructions in this paper have
been mechanised in Cubical Agda; the proofs are available at
https://github.com/caripoulet974/cellular methods.

B. Related work

Our definition of CW complexes is based on the definition
given by Buchholtz and Favonia in their work on cellular
cohomology [5]. We develop the theory quite a bit further: we
define cellular maps and cellular homotopies, and we prove
their appurtenant approximation theorems. This lets us prove
that cellular (co)homology is functorial without having to rely
on a pre-existing (co)homology theory.1 This is especially
valuable for the construction of cellular homology, as there is
no pre-existing notion of homology that has been developed
to the same extent as Eilenberg–MacLane cohomology.

Nevertheless, there is work by Graham on developing
synthetic homology in HoTT using the Eilenberg–MacLane

1Functoriality and homotopy invariance are not proved explicitly by Buch-
holtz and Favonia, but they follow from their comparison between cellular
and Eilenberg–MacLane cohomology.979-8-3503-3587-3/23/$31.00 ©2023 IEEE
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prespectrum [6]. The resulting functor is expected to satisfy the
Eilenberg-Steenrod axioms, but the additivity axiom remains
an open question. Additionally, Christensen and Scoccola
gave a proof of the Hurewicz theorem for this definition of
homology [7]. We emphasise, however, that the proof given
of the Hurewicz theorem in this paper is vastly different
in its approach and that it concerns a different definition
of homology compared to the one used by Christensen and
Scoccola.

II. BACKGROUND

In this section, we will give a brief introduction to the
elementary constructions and facts from HoTT which are used
in this paper. We assume some level of familiarity with HoTT
and refer the reader to the HoTT Book [1] whose notation we,
for the most part, stay consistent with in this paper. Another
excellent introduction is [8].

a) Π-types: we borrow Agda notation and often write
(a : A) → B a instead of Πx:aB a. Non-dependent Π-types
are simply denoted A → B. We may still use the traditional
Π-notation when convenient.

b) Path types: given x, y : A, we write x = y for their
identity type. We refer to elements of this type as paths, and
we write reflx : x = x for the constant path. The path induction
rule states that dependent functions ((y, p) : Σy:A(x = y))→
B(y, p) are determined by their action on (x, reflA).

c) Universes and pointed types: we write Type for the
universe of types (at some implicit universe level) and Type⋆
for the universe of pointed types, i.e. the type of pairs (A, ⋆A)
where A : Type and ⋆A : A. For simplicity, we generally write
‘A is a pointed type’ and leave the basepoint implicit. We
always use the notation ⋆A for basepoints.

d) Pointed functions: given two pointed types A and B,
the type of pointed functions A →⋆ B is the type of pairs
(f, ⋆f ) where f : A → B is a function and ⋆f : f ⋆A = ⋆B .
We often simply write f : A→⋆ B and leave ⋆f implicit.

e) Fibres, equivalences and univalence: we write fibf (b)
for the fibre of a function f : A→ B over a point b : B. That
is, fibf (b) := Σa:A(f a = b). A function f : A → B whose
fibres are contractible (i.e. pointed by a unique point) is called
an equivalence. We write f : A ≃ B, and f−1 : B ≃ A for the
induced inverse. The identity id : A→ A is always an equiv-
alence; the univalence axiom says precisely that the function
A = B → A ≃ B defined by path induction by sending reflA
to the identity equivalence is itself an equivalence.

f) The Unit type and the empty type: we write 1 for the
unit type, i.e. the inductive type with one unique constructor
⋆1 : 1, and ⊥ for the empty type.

A. Pushouts

Besides inductive types, we will also make heavy use of
higher inductive types (HITs), which include path constructors
in addition to point constructors. One of the arguably most
important HITs in HoTT is the pushout of a span.

Definition 1 (Pushouts). Given a span Y
f←− X

g−→ Z, we
define its pushout (as indicated in the diagram below) to be
the HIT generated by point constructors
inl : Y → Y ⊔X Z and inr : Z →
Y ⊔X Z, as well as a higher constructor
push : (x : X)→ inl (f x) = inr (g x).

X Z

Y Y ⊔X Z

g

f ⌟

Given a span S, we may also write POS for its pushout.
We always take Y ⊔X Z to be pointed by inl ⋆Y (assuming Y
is pointed). Pushouts will allow us to define most spaces of
interest in this paper. The following three instances of pushouts
are especially important for us.

a) Cofibres: we define the cofibre of a map f : X → Y ,
denoted Cf , by Cf := 1 ⊔X Y . To stay consistent with the
existing literature, we write cfcod instead of inr : Y → Cf .

b) Wedge sums: given a dependent family of pointed
types A : I → Type⋆, we define its wedge sum, denoted∨

i:I(A i), to be the cofibre of the obvious map I → Σi:I(A i).
When we specifically wish to reason about the binary wedge
sum of two pointed types A and B, we may alternatively define
these by A ∨B = A ⊔1 B.

c) Suspensions: we define the suspension of a type X ,
denoted ΣX , by ΣX := 1 ⊔X 1. As is standard practice, we
use north and south to refer to inl ⋆ and inr ⋆ respectively,
and we write merid : X → north = south instead of push.
Suspensions allow us to define spheres inductively by setting
S−1 := ⊥, i.e the empty type, and Sn := ΣSn−1 for n > −1.

Let us state two elementary lemmas concerning pushouts
which will be useful later. The following lemma is proved
using standard pushout-pasting arguments.

Lemma 2. Let f : A→ B with A and B. We have
1) C(cfcod:B→Cf ) ≃ ΣA,
2) Cf ≃ ΣA ∨B if B is pointed and f is constant at ⋆B .

We will also need the 3×3-lemma – an incredibly useful
result which was first introduced in the HoTT literature by
Brunerie [2, Lemma 1.8.3] whose notation we also borrow. Let
Aij be a commutative grid of types indexed by I = {0, 2, 4}

A00 A02 A04

A20 A22 A24

A40 A42 A44

f01 f03

f10

f30

f12

f21

f23

f32

f14

f34

f41 f43

as in the diagram to the right.
The 3×3-lemma says that tak-
ing pushouts over rows and then
columns is equivalent to taking
pushouts over columns and then
rows. Let us unwrap this state-
ment. Let A•i and Ai• denote,
respectively, the pushout along column i and the pushout
along row i. That is, let A•i := A0i ⊔A2i A4i and
Ai• := Ai0 ⊔Ai2 Ai4. We produce a span (A•i)i∈I :=

(A•0
f01 ⊔f21 f41←−−−−−−−− A•2

f03 ⊔f23 f43−−−−−−−−→ A•4). We define (Ai•)i∈I

similarly. Let A□• := PO (A•i)i∈I and A•□ := PO (A•i)i∈I .

Lemma 3 (3×3-lemma). A□• ≃ A•□

B. Truncations

We say that a type A is a (−2)-type if it is contractible (i.e.
if it consists of a unique element) and, inductively, that it is an
(n+1)-type if any identity type x =A y over A is an n-type.
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We refer to (−1)-types (i.e. types with at most one element) as
propositions and 0-types (i.e. types which satisfy UIP) as sets.
In HoTT, any type A can be turned into an n-type by forming
its n-truncation, denoted ∥A∥n. This type is defined as a HIT
with a point constructor |−| : A → ∥A∥n and a few addi-
tional constructors forcing ∥A∥n to be an n-type. A detailed
implementation can be found in [1, Section 7.3] but will not be
needed here; all we shall need is the elimination property of the
n-truncation which says that any (possibly dependent) function
f : (x : ∥A∥n)→ B x is uniquely determined by its action on
canonical elements whenever B is a family of n-types. That
is, the map ((x : ∥A∥n) → B x) → ((a : A) → B |a|) is
an equivalence. The philosophy of the elimination principle
is that whenever we are trying to construct an element of a
n-type, we may use ∥A∥n and A interchangeably.

Truncations are crucial for internalising several notions and
constructions from traditional mathematics in HoTT:

a) Choice: We say that a set A satisfies choice, or
equivalently that A is a projective set, if the canonical map
∥(a : A)→ B a∥−1 → ((a : A) → ∥B a∥−1) is an equiv-
alence. The statement that every set is projective is a strong
form of the axiom of choice, which is not available in construc-
tive HoTT. On the other hand, the set Fin(n) := Σi:N(i < n)
is constructively projective, meaning that we do not need any
axiom to get choice for families indexed over a finite set. We
write pSet for the type of all projective sets.

b) Existence: we define ∃a:A(B a) := ∥Σa:A(B a)∥−1

to encode the notion of propositional existence, which is also
called mere existence. When this type is inhabited, we say that
there merely exists an element a : A such that B a holds.

c) Homotopy groups: given a pointed type A and an
integer n ≥ 1, we define the nth homotopy group of A by
πn(A) := ∥Sn →⋆ A∥0. This type turns out to have a group
structure, which is abelian for n ≥ 2. The construction is
functorial via post-composition; for a map f : A →⋆ B, we
write πn(f) : πn(A) → πn(B) for the functorial action. The
construction is also invariant under n-truncation: the canonical
map πn(A)→ πn(∥A∥n) is an isomorphism of groups.

d) Connectedness: we say that a type A is n-connected
if ∥A∥n is contractible. A function f : A → B is said to be
n-connected when all of its fibres are. It is an easy fact that
if f is n-connected, it induces an equivalence on truncations
∥A∥n ≃ ∥B∥n (and thus also on πn).

Another important fact about n-truncations is that they
commute with path types, in the sense that for any x, y : A,
the canonical map ∥x = y∥n → |x| =∥A∥n+1

|y| is an
equivalence [1, Theorem 7.3.12]. This principle, together with
the elimination principle for Sn, gives rise to the following
elementary ‘choice principle’ for Sn.

Lemma 4. Given a dependent type A : Sn → Type, there
exists a function

chooseSn : ((x : Sn)→ ∥Ax∥n−1)→ ∥(x : Sn)→ Ax∥−1

III. CW COMPLEXES IN HOTT
A CW complex is a space which is constructed by an

iterative process of attaching cells: start with a collection of

points (0-dimensional cells), then connect some of them using
1-dimensional line segments to obtain a multigraph, then glue
a collection of 2-dimensional discs to the multigraph, then
3-dimensional cells, and so on. This iterative construction is
captured by the following definition in type theory:

Definition 5. A projective CW structure is a sequence of types
(X−1

ι−1−−→ X0
ι0−→ X1

ι1−→ . . . ) together with a cardinality
function cX(−) : N→ pSet and accompanying attaching maps
αX
i : Si × cXi+1 → Xi satisfying the following two conditions.

A1 X−1 ≃ ∅,
A2 for each i ≥ −1, the square

to the right is a pushout.

Si × cXi+1 cXi+1

Xi Xi+1

snd

αX
i

ιi

⌟

The cardinality function indicates ‘how many’ cells should
be added at every stage, and the attaching maps αi explain how
the boundary of each (i+1)-dimensional cell is attached to the
i-skeleton Xi. Finally, the pushout condition states that Xi+1

is obtained from Xi by gluing cones along these boundaries,
as in the ‘hub and spokes’ construction from [1, Section 6.7].
Since we will be using them a lot throughout the paper,
we introduce special notation for the pushout constructors of
Xi+1: given x : Xi, y : cXi+1 and s : Si, we write

• ιi x : Xi+1 (as indicated in the diagram),
• cell y : Xi+1, and
• glue(s, y) for the path ιi (αX

i (s, y)) = cell y.

We will often denote CW structures simply by X∗ : CWstr
and leave ι∗, cX∗ and αX

∗ implicit. We remark that we assume
our sets of cells to be projective, i.e. we assume that they
all satisfy choice. In constructive HoTT, this includes at least
the CW structures that have a finite number of cells in each
dimension, which are already sufficient to represent many
spaces of interest. In presence of the full axiom of choice
(AC∞,−1 in the notation of [1]), all sets are projective and
thus our definition works with arbitrary sets of cells.

Disclaimer 6. In this paper, we will restrict ourselves to CW
structures of finite type, i.e. we take their cardinality function
to be cXn := Fin(kn) for some kn : N. We make this restriction
for three reasons:

• it is the definition used in the closely related paper on
cellular cohomology by Buchholtz and Favonia [5],

• it makes the presentation of some results more direct, as
we can avoid the general theory of projective sets, and

• for computational reasons, it is the version used in our
formalisation.

We remark, however, that all of our methods and results (apart
from Proposition 43, which has to be reformulated slightly)
can be straightforwardly generalised to the projective version
of CW structures presented in Definition 5. Although we leave
this generalisation for a future extended version of this paper,
we wish to thank an anonymous reviewer for calling our
attention to it.

We will write
∣∣cXn ∣∣ for the cardinality of cXn and may abuse

notation by writing e.g. (cXn − 1) for the type Fin(
∣∣cXn ∣∣− 1).
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Definition 7. Given a CW structure X∗, we define its sequen-
tial colimit to be the HIT X∞ which consists of

• for every x : Xn, a point [x]n : X∞,
• for every x : Xn, a path pushx : [x]n = [ιn x]n+1.

We sometimes write ι∞ x for [x]n when n is clear from context.

Definition 8. We say that a type A is a CW complex if
there merely exists some CW structure X∗ such that A is the
sequential colimit of X∗. Formally, we define

CW := Σ(A : Type) .∃(X∗ : CWstr) . X∞ ≃ A.

In the rest of this paper, we will develop the theory of CW
complexes, building up to a definition of cellular homology
and a proof of the Hurewicz theorem. In doing so, we will take
advantage of the fact that every CW complex is presented by
a CW structure, which allows us to construct most properties
and objects by induction on the dimension. Thus, our first
endeavour shall be the development of a working theory of
CW structures, starting with their natural notion of maps.

Definition 9. A cellular map from X∗ to Y∗ is a pair (f∗, h∗)
where fi : Xi → Yi and hi : (x : Xi)→ fi+1(ιi x) = ιi(fi x),
as depicted on the diagram below:

X−1 X0 X1 ...

Y−1 Y0 Y1 ...

f−1 f0 f1h0 h1

In simpler terms, a cellular map is a map which respects
the dimensions, in the sense that it sends the n-dimensional
skeleton of the source to the n-dimensional skeleton of the
target. For simplicity, we generally write f∗ : X∗ → Y∗ for
a cellular map, leaving h∗ implicit. Every cellular map from
X∗ to Y∗ gives rise to a function f∞ between their colimits:

f∞ : X∞ → Y∞
f∞ [x]n := [fn x]n
apf∞(pushx) := push (fn x) · ap[−]n+1

(hn x).

The identity can be presented as a cellular map, and the
obvious composition of two cellular maps yields the composi-
tion of the colimits. Furthermore, this composition operation is
associative and unital. All this data assembles into a category
CWstr whose objects are CW structures, and whose mapping
sets are given by (the set truncation of) cellular maps. The
colimit operation then defines a functor from CWstr to the
category of CW complexes and set-truncated ordinary maps,
which we denote by Ho(CW).2

The interplay between Ho(CW) and CWstr will be a
recurring theme of this paper: our main object of interest is the
category Ho(CW), but we find that it does not offer sufficient
control over the objects and the morphisms. Instead, we define
all of our constructions in CWstr, taking advantage of the
inductive description of spaces and maps, before transporting
them to Ho(CW). Our main tool for this transport step will be

2We reserve the name CW for the wild ∞-category of CW complexes,
which we will not use in this paper. All of our categories are 1-categories,
and we do not assume them to be univalent by default.

the cellular approximation theorem, which provides a partial
inverse to the colimit functor.

A. Pushouts of CW structures

Before embarking on the proof of the cellular approximation
theorem, it might be good to look at a concrete example of
a CW structure, to help the reader build intuition. For this
purpose, we shall explain how to construct the homotopy
pushout of two cellular maps. This construction will play
an important role later down the line, as the definition of a
homology theory requires our category of CW complexes to
be equipped with pushouts.

Definition 10. Let X∗, Y∗, Z∗ be three CW structures, and
(f∗, h∗) : X∗ → Y∗ and (g∗, k∗) : X∗ → Z∗ be two cellular
maps. We define the pushout of the span Y∗

f∗←− X∗
g∗−→ Z∗ to

be the CW structure (Y ⊔X Z)∗ defined by letting (Y ⊔X Z)i
be the pushout Yi ⊔Xi−1 Zi, i.e. the pushout of the span
Yi

ιi−1◦fi−1←−−−−−− Xi−1
ιi−1◦gi−1−−−−−−→ Zi.

Inclusions: The inclusions (Y ⊔X Z)i → (Y ⊔X Z)i+1 are
the obvious maps induced by the corresponding inclusions for
X∗, Y∗ and Z∗.
Cells: We define the cell cardinalities cY⊔XZ

∗ in terms of those
of X∗, Y∗ and Z∗ by letting cY⊔XZ

i = cYi + cZi + cXi−1.
Attaching maps: Finally, we define the attaching maps as

αY⊔XZ
i :

∑
c∈{cYi+1,c

Z
i+1,c

X
i } Si × c → Yi ⊔Xi−1 Zi

αY⊔XZ
i := υi + ζi + χi

where we define υi := inl ◦ αY
i , ζi := inr ◦ αZ

i , and
χi : Si × cXi → Pi is defined by Si-induction: on point
constructors by setting χi(north, y) := inl (fi+1(cell y)) and
χi(south, y) := inr (gi+1(cell y)), and on the path constructor
by letting apχi(−,y)(merid x) be the composite path

inl (...)
apinl l−−−→ inl (...)

push (αX
i−1(x,y))−−−−−−−−−−→ inr (...)

apinr r
−1

−−−−−→ inr (...)

where l : fi(cell y) = ιi−1(fi−1(α
X
i−1(x, y))) and is defined

by l := apfi(glue(x, y)
−1) · hi−1(α

X
i−1(x, y)), and similarly

for r : gi(cell y) = ιi−1(gi−1(α
X
i−1(x, y))).

Proposition 11. Definition 10 satisfies A1 and A2 .

Proof. The proof mostly follows from the 3×3 lemma. The
interested reader can consult the formalised version.

Note that the colimit of this definition is the expected pushout:

colim
i→∞

(
Y ⊔X Z

)
i
= colim

i→∞

(
Yi ⊔Xi−1 Zi

)
≃ Y∞ ⊔X∞ Z∞

and thus Definition 10 does indeed provide a CW structure for
the pushout of a span in CWstr. Now, if we want to extend
this construction to the category Ho(CW), we need to work
with arbitrary maps between the colimits instead of cellular
maps. This is one out of a handful places where cellular
approximation is needed.
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B. Finite structures and the cellular approximation theorem

In classical algebraic topology, the cellular approximation
theorem is a cornerstone result which states that any contin-
uous function between two CW complexes is homotopic to a
cellular map. This seems perfect for extending our construc-
tions of pushouts to Ho(CW), but unfortunately this theorem
appears to be out of reach in our constructive framework: the
standard proof involves considerations of point-set topology
and the use of the axiom of choice. However, what we can
prove is a synthetic and finitary version of the theorem, which
informally states that the cellular approximation theorem holds
when the domain is finite dimensional. This will be the main
result of this subsection.

Before providing the precise statement for our constructive
cellular approximation theorem, let us start with a brief
digression about finite subcomplexes and substructures – this
will allow us to formulate a statement that is somewhat more
flexible than the one suggested above. We say that a CW
structure is finite (of dimension n) if the maps in its underlying
sequence of types are equivalences starting from dimension n.
Given any CW structure X∗, there is a canonical way to restrict
it to a finite CW structure X(n)

∗ with the following definitions:

X
(n)
i :=

{
Xi if i < n

Xn otherwise
c
(n)
i :=

{
ci if i ≤ n
⊥ otherwise.

The structure X
(n)
∗ trivially satisfies X(n)

∞ ≃ Xn. We will
use the same notation for cellular maps, writing f (n)∗ for the
restrictions of a cellular map f∗ to the n-skeleton of the
domain. For ease of notation, we also define X

(∞)
∗ := X∗

(and similarly for f (∞)
∗ ).

Definition 12. Let X∗ and Y∗ be two CW structures, and let
f : X∞ → Y∞ be an arbitrary map between their colimits. A
cellular n-approximation of f is the data of a cellular map
(f∗, h∗) : X

(n)
∗ → Y∗ along with a homotopy

t : (x : Xn)→ f(ι∞x) = ι∞(fn x).

Our first cellular approximation states that n-approximations
always exist for n finite. To get there, we will need the help
of two easy lemmas.

Lemma 13. For any CW structure X∗, the inclusion map
ιi : Xi → Xi+1 is (i− 1)-connected.

Proof. It is a general fact that given any span B
f←− A

g−→ C,
the map inl : B → B ⊔A C is as connected as g [2, Proposition
2.3.10]. In our case, Xi+1 is defined as the pushout of the span
Xi ← Si×ci+1

snd−−→ ci+1, and thus it suffices to show that the
projection snd : Si×ci+1 → ci+1 is (i−1)-connected. Indeed,
its fibres are equivalent to Si, which is (i− 1)-connected.

Lemma 14. For any CW structure X∗, the inclusion map
ι∞ : Xi → X∞ is (i− 1)-connected.

Proof. It follows immediately from Lemma 13 that all of the
maps Xi+k

ιi+k−−−→ Xi+k+1 are at least (i− 1) connected. As a

consequence, their transfinite composition ι∞ : Xi → X∞ is
also (i− 1)-connected [9, Corollary 7.7].

Theorem 15 (First cellular approximation theorem). Let X∗
and Y∗ be CW structures. For any map f : X∞ → Y∞ and
n : N, there merely exists a cellular n-approximation of f .

Proof. The proof proceeds by induction on n. The base case,
n = −1, is trivial. For the inductive step, assume that we
have an n-approximation f ′∗ of f . We will use f ′∗ to merely
construct an (n + 1)-approximation f∗ : X

(n+1)
∗ → Y∗ (the

fact that we are only aiming for mere existence allows us to
use the elimination rule for propositional truncations a finite
number of times). We define fi := f ′i for all i ≤ n. It remains
to define fn+1 and its associated homotopies. Consider the
following (not necessarily commutative) diagram:

Sn × cXn+1 cXn+1

Xn Yn

Xn+1 Yn+1

Y∞

αX
n f ′

n◦α
X
n (⋆Sn ,−)

f ′
n

ιn
ιn◦f ′

n
ιn

f◦ι∞

If we can construct fn+1 as the dashed map above in a way
that makes all triangles commute, we are done. By the elimina-
tion principle of pushouts, the dashed map exists if we can fill
the shaded area. In other words, we need to construct an ele-
ment of type ∥((x, y) : Sn × cn+1)→ F (x, y) = F (⋆, y)∥−1

for F := ιn ◦ f ′n ◦ αX
n . Using the projectivity of cn+1 and

Lemma 4, this corresponds to constructing, for every y : cn+1,
a family of paths (x : Sn) → ∥F (x, y) = F (⋆, y)∥n−1. By
Lemma 14, the map ι∞ : Yn+1 → Y∞ is n-connected
and therefore its action on path spaces, apι∞ , is (n − 1)-
connected. Thus ∥F (x, y) = F (⋆, y)∥n−1 is equivalent to
∥ι∞(F (x, y)) = ι∞(F (⋆, y))∥n−1. Since the dotted area of
the diagram commutes, it suffices to show that the outermost
diagram commutes, which is a consequence of the identity
ι∞ ◦ f ′n = f ◦ ι∞ and the fact that X∗ is a CW structure. The
remaining homotopy involved in the definition of a cellular
approximation holds by construction.

Corollary 16. For any span of CW complexes Y
f←− X g−→ Z

with X finite, the pushout Y ⊔X Z is a CW complex.

Unfortunately, our finitary approximation theorem is not
quite strong enough to prove the existence of all pushouts in
Ho(CW). One option to remedy this would be to assume the
axiom of countable choice, which allows us to deduce the mere
existence of an ∞-approximation from the mere existence of
an n-approximation for every n. This would, however, limit
the generality of our theorems (countable choice does not hold
in arbitrary infinity toposes), so we will refrain from doing so.

Question 17. Can we prove that every map between CW
complexes merely has an ∞-approximation without using the
axiom of countable choice?
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Since we do not know the answer to this question, we will
have to work with finite cellular approximations for the rest
of this paper. For this purpose, we introduce the notion of
n-truncated complexes, which can be faithfully captured by
finite cellular approximations:

Definition 18. An n-truncated CW complex is an n-truncated
type A for which there merely exists a CW structure X∗ of
dimension n+ 1 such that A ≃ ∥Xn+1∥n.

We write Ho(CW(n)) for the category of n-truncated CW
complexes and ordinary maps. Note the mismatch between
the dimension of the structure and the truncation level in
Definition 18. This mismatch is here so that we may define
a truncation functor truncn from Ho(CW) to Ho(CW(n)):
we can send the pair (A, |X∗|) to (∥A∥n, |X

(n+1)
∗ |), and the

isomorphism condition holds because ∥X∞∥n ≃ ∥Xn+1∥n.
We also introduce a corresponding category CWstr(n) whose
objects are CW structures of dimension n + 1, and whose
morphisms are cellular maps of dimension n.

C. Cellular homotopies and the 2nd approximation theorem
In essence, the first cellular approximation tells us that there

merely exists an inverse to the colimit operation for finite cellu-
lar maps. This already lets us transfer some constructions from
CWstr to Ho(CW), but we would ideally like to get rid of that
propositional truncation and define a proper approximation
functor from Ho(CW) to CWstr – or at least from Ho(CW(n))
to CWstr(n), to avoid choice issues. Unfortunately, this turns
out to be problematic, as the cellular approximation theorem
is inconsistent without the propositional truncation.

Theorem 19. The set-truncated version of Theorem 15 is false.

Proof. Both 1 and S1 can be presented by finite CW structures
(which we will denote by 1∗ and S1∗), with only a 0-cell for
the former and a 0-cell plus a 1-cell for the latter. Given any
x : S1, define x̂ : 1 → S1 to be the corresponding function.
A cellular approximation of x̂ means that we can factor it
as 1 ∼−→ 10

x̂0−→ S10 → S1, which in turn implies that x is
equal to the basepoint ⋆S1 . Therefore, the set-truncated version
of Theorem 15 provides a proof of (x : S1) → ∥x = ⋆S1∥0.
By Lemma 4, this entails ∥(x : S1)→ x = ⋆S1∥−1 which by
truncation elimination implies that S1 is contractible. But this
is provably false in HoTT [10].

This problem stems from a mismatch between the notion of
equality for morphisms in Ho(CW) and the notion of equality
for morphisms in CWstr. Since any homotopy gives rise to
an equality between maps, the morphisms in Ho(CW) should
be understood as maps up to homotopy, while the equality
between morphisms in CWstr is much closer in spirit to a strict
equality. Therefore, if we want to frame our approximation
theorem as a functor, we need to quotient the morphisms of
the target category by an adequate notion of homotopy.

Definition 20. A cellular homotopy between cellular maps
f∗, g∗ : X∗ → Y∗ is a family

pi : (x : Xi)→ ιi(fi(x)) =Yi+1 ιi(gi(x))

with fillers qi x, for each i ≥ 0 and x : Xi, of the following
square.

ιi+1(ιi (fi x)) ιi+1(ιi (gi x))

ιi+1(fi+1(ιi x)) ιi+1(gi+1(ιi x))
pi+1(ιi x)

apιi+1
(pi x)

qi x

We use the notation (p∗, q∗) : f∗ ∼ g∗ or simply p∗ : f∗ ∼ g∗
when the qi’s are clear from context.

One can easily prove that composition of cellular maps is
invariant with respect to cellular homotopy. This lets us define
the category Ho(CWstr), whose objects are CW structures and
whose morphisms are cellular maps up to cellular homotopy.
Furthermore, the existence of a cellular homotopy between f∗
and g∗ implies that their colimits are homotopic, or in other
words, that f∞ = g∞. This means that the colimit functor
factors through Ho(CWstr).

That new colimit functor almost induces an equivalence
between the categories Ho(CW(n)) and Ho(CWstr(n)). In
order to prove this, we will need to extend our approximation
theorem to cellular homotopies. Because the caveats regarding
the axiom of countable choice still apply, we start by introduc-
ing a notion of finite approximation for cellular homotopies.

Definition 21. Let f∗, g∗ : X∗ → Y∗ be two cellular maps,
and let p : (x : X∞) → f∞(x) = g∞(x) be a homotopy
between their colimits. A cellular n-approximation of p is a
cellular homotopy p∗ : f

(n)
∗ ∼ g

(n)
∗ equipped with a filler of

the following square for each x : Xn.

f∞(ι∞ x) g∞(ι∞ x)

ι∞(ιn(fn(x))) ι∞(ιn(gn(x)))
apι∞ (pn(x))

p(ι∞ x)

We are now ready to state the second cellular approximation
theorem. Its proof follows the same strategy as Theorem 15,
so we omit it but remark that it has been mechanised.

Theorem 22 (Second cellular approximation theorem). Let
f∗, g∗ : X∗ → Y∞ be cellular maps and p : f∞ ∼ g∞. For
any n : N, there merely exists an n-approximation of p.

Theorem 22 implies that taking the colimit of a cellular map
between two CW structures in Ho(CWstr(n)) is an injective
operation. On the other hand, Theorem 15 implies that it is
a surjective operation. Therefore, the colimit induces a fully
faithful functor from Ho(CWstr(n)) to Ho(CW(n)). Since this
functor is essentially surjective in the sense of [1, Chapter 9],
we get the following result as a corollary.

Corollary 23. The colimit functor induces a weak equiva-
lence between Ho(CWstr(n)) and Ho(CW(n)). Equivalently,
Ho(CW(n)) is the Rezk completion of Ho(CWstr(n)).

The relations between the various categories defined so
far are summarised in Figure 1. This diagram gives us a
systematic way of lifting a functor F defined over CWstr
to a functor defined over Ho(CW): first, if the functor F
happens to use only a finite number of dimensions, it can
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Ho(CW) Ho(CWstr) CWstr

Ho(CW(n)) Ho(CWstr(n)) CWstr(n)

colim

truncntruncn truncn

colim

∼

Fig. 1. The categories at play

be factored as F ◦ truncn for some functor F defined over
CWstr(n). Then, if we manage to prove that F is invariant
under cellular homotopy, we can extend it to a functor F̃
defined over Ho(CWstr(n)). Finally, if the target is a univalent
category, F̃ can be extended to a functor defined over the
Rezk completion of Ho(CWstr(n)), which is Ho(CW(n)). By
composing the result with the truncation functor, we get a lift
of F to Ho(CW).

IV. CELLULAR HOMOLOGY

In algebraic topology, the homology groups of a space
is a family of topological invariants which are somewhat
similar to homotopy groups in that they intuitively measure
the number of n-dimensional holes, but are much simpler to
compute. There is a plethora of homology theories (roughly,
different definitions for these homology groups) but among
them, one is especially relevant to our interests: the theory of
cellular homology is defined in terms of CW structures, and is
particularly well suited for computation. Developing cellular
homology in HoTT gives a new meaning to the adjective
computational. Through the Curry–Howard correspondence, it
provides formally verified computations of homology groups,
facilitating the idea of ‘proof by computation’ – a central idea
in computer formalisation of synthetic homotopy theory [2],
[11], [12], [13].

In this section, we define a (reduced) homology functor
H̃str

i : CWstr → AbGrp which we then lift to a functor H̃cw
i

over Ho(CW) using our freshly proved cellular approximation
theorem. This provides the first complete definition of cellular
homology in HoTT. We also state a finitary version of the
Eilenberg–Steenrod axioms and prove that our functors satisfy
them, thereby showing that they deserve the name of a
‘homology theory’.

A. A crash course in homological algebra

The first step in the definition of homology groups is to
approximate CW structures by cellular chain complexes. Be-
fore doing so, however, we need some preliminary background
on chain complexes, as well as a definition of the homology
groups of a chain complex.

Definition 24. A chain complex is a sequence of abelian
groups (called i-chains)

. . .
∂2−→ C1

∂1−→ C0
∂0−→ C−1

∂−1−−→ . . .

where the maps ∂i (called boundary maps) are group homo-
morphisms satisfying the equation ∂i ◦ ∂i+1 = 0.

Definition 25. A chain map ϕ∗ : C∗ → D∗ is a collection
of group homomorphisms ϕi : Ci → Di compatible with
boundary maps in the sense that ϕi ◦ ∂Ci+1 = ∂Di+1 ◦ ϕi+1.

There are natural definitions of chain map composition
(levelwise composition) and of the identity chain map (the
levelwise identity). This lets us define the category Ch whose
objects are chain complexes and whose morphisms are chain
maps. We also have a natural notion of chain homotopy.

Definition 26. A chain homotopy η∗ between two chain maps
ϕ∗, ψ∗ : C∗ → D∗ is a sequence of group homomorphisms
ηi : Ci → Di+1 such that ϕi − ψi = ∂Di+1 ◦ ηi + ηi−1 ◦ ∂Ci .

Chain homotopies are compatible with composition, which
lets us define the homotopy category of chain complexes
Ho(Ch) whose morphisms are chain maps up to chain homo-
topy. We finally arrive at the definition of homology groups,
which is the natural analogue of homotopy groups in the
category of chain complexes.

Definition 27 (Homology groups). We define the nth ho-
mology group of a chain complex (C∗, ∂∗) by Hn(C∗) :=
ker ∂n/ im ∂n+1.

We remark that the quotient in the definition above is well-
defined since the boundary equation ∂i ◦ ∂i+1 = 0 ensures that
im ∂i+1 ⊆ ker ∂i. Furthermore, any chain map ϕ∗ : C∗ → D∗
induces a homomorphism Hn(ϕ∗) : Hn(C∗)→ Hn(D∗), and
it does so in a functorial way. Thus, the definition of the nth
homology group can be presented as a functor from Ch to the
category of abelian groups AbGrp. Lastly, a standard argument
shows that the existence of a chain homotopy between two
chain maps ϕ∗ and ψ∗ implies that Hn(ϕ∗) ∼= Hn(ψ∗).
Therefore, the definition of Hn factors through the category
Ho(Ch). This concludes our definition of the homology groups
of a chain complex.

B. Sphere bouquets and reduced cellular homology

We are now in a position to define the cellular chain
complex associated to a CW structure X∗. The definition for
the abelian groups of n-chains is rather straightforward:

• when n ≥ 0, we set Cn := Z[cXn ], i.e. Cn is the free
abelian group with a generator for each n-cell in X∗,

• when n = −1, we set C−1 := Z (in technical terms, this
means that we are defining the augmented chain complex
of X∗, but we will not go into detail here),

• when n < −1, we define Cn to be the trivial group.
The definition of the boundary maps is slightly more involved.
In positive degrees, our goal is to construct a homomorphism
of free abelian groups ∂i+1 : Hom(Z[cXi+1],Z[cXi ]). To do so,
we will exploit the fact that free abelian groups are closely
related to wedge sums of spheres, which we call sphere
bouquets. This approach is essentially a reinterpretation of the
definition used by May [14] and Buchholtz and Favonia [5].
In what follows, and for the remainder of the paper, we will
use somewhat non-standard terminology and say that a type
A is finite if A ≃ Fin(k) for some k.

Definition 28. Given a finite type A and an integer n ≥ 0,
define the sphere bouquet of cardinality |A| and dimension n
to be the type

∨
A Sn, i.e. the wedge sum of |A| n-spheres.
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Before clarifying the relation between sphere bouquets and
free abelian groups, we first need to recall some well-known
facts about the degree of an endo-function of Sn. For any
n > 0, there is an isomorphism deg from πn(Sn) to Z. In
fact, this definition extends to any (not necessarily pointed)
map f : Sn → Sn. This is done by noting that the ‘forgetful
map’ ∥fst∥0 : πn(Sn)→ ∥Sn → Sn∥0 is an equivalence. This
allows us to define a degree map by the composition

(Sn → Sn) |−|−−→ ∥Sn → Sn∥0
∥fst∥−1

0−−−−→ ∥Sn →⋆ Sn∥0
deg−−→ Z

We allow some overloading of notation by also using deg
to denote the above composition. In addition to inducing an
isomorphism of groups, deg has a few useful properties.

Proposition 29. The degree map commutes with suspensions,
i.e. any f : Sn → Sn is of the same degree as its suspension
Σ f : Sn+1 → Sn+1. Additionally, deg takes function compo-
sition to integer multiplication, i.e. deg(f ◦ g) = deg f ·deg g.

As the degree map has been well studied in HoTT al-
ready [5], [15], we omit the proof of Proposition 29. This
degree function has a natural generalisation to sphere bou-
quets, which we call the bouquet degree function (bdeg). It is
defined by the following composition of arrows:

(
∨

A Sn →
∨

B Sn) ΠAΠB(Sn → Sn)

(ΠASn →
∨

B Sn) ΠAΠBZ

(ΠASn → ΠBSn) Hom(Z[A],Z[B])

ι∨
∗

(deg∗)∗

∼

where the last equivalence is defined using the universal
property of the free abelian group. The bouquet degree map
immediately inherits properties corresponding to those listed
in Proposition 29:

Proposition 30. Let A,B and C be finite types, n ≥ 0. The
following facts hold.

1) The bouquet degree function induces a group homomor-
phism

∥∥∨
A Sn+1 →

∨
B Sn+1

∥∥
0
→ Hom(Z[A],Z[B]),

where the group structure on the left-hand side is the
natural extension of the group structure on πn+1(Sn+1).

2) The bouquet degree function commutes with suspension,
i.e. any f :

∨
A Sn →

∨
B Sn is of the same degree as

its suspension Σ f : Σ(
∨

A Sn)→ Σ(
∨

B Sn), where the
bouquet degree of the latter function is well-defined since
Σ(

∨
X Sn) ≃

∨
X Sn+1 for any X .

3) The bouquet degree function respects composition, i.e. for
f :

∨
A Sn →

∨
B Sn and g :

∨
B Sn →

∨
C Sn we have

bdeg(g ◦ f) = bdeg g ◦ bdeg f .

We can now return to the construction of the boundary
maps: we would like to define, for any CW structure X∗,
a homomorphism ∂i+1 : Z[cXi+1] → Z[cXi ]. By applying our
bouquet degree function, it suffices to construct a function
di :

∨
cXi+1

Si+1 →
∨

cXi
Si+1. We recall from [5] that there

is an equivalence e : Xi/Xi−1 ≃
∨

cXi
Si. When i > 0, we

obtain it by considering the following diagram.

Si−1 × cXi Xi−1 1

cXi Xi Σ(
∨

cXi
Si−1)

αX
i−1

⌟

Since the outermost square is a pushout, we know, by pushout
pasting, that so is the right square. The construction of e is
completed by observing that suspension commutes with wedge
sums. When i = 0, the equivalence is obtained by noting that
X0/X−1 ≃ X0 + 1 which allows us to identify the appended
point with the basepoint in

∨
cX0

S0. We may now construct
the desired map di+1 by considering the composition∨
cXi+1

Si+1 ∼−→Xi+1/Xi
pinch−−→ ΣXi

Σcfcod−−−→ Σ(Xi/Xi−1)
∼−→

∨
cXi

Si+1

where pinch is the pinch map, i.e. the pointed map identifying
inr with south and push with merid. Finally, we set ∂i+1 =
bdeg di+1. Note that this whole construction is only valid for
i > −1. To complete the definition, we define ∂0 : Z[cX0 ]→ Z
by sending every generator of Z[cX0 ] to 1, and lastly we let
the maps in negative dimension be trivial.

Proposition 31. The boundary maps satisfy ∂i ◦ ∂i+1 = 0.

Proof. First, assume that i > 0. We compute:

∂i ◦ ∂i+1 = bdeg di ◦ bdeg di+1 = bdeg (Σdi) ◦ bdeg (di+1)

= bdeg (Σdi ◦ di+1)

We are done if we can show that Σdi ◦ di+1 = 0. This
composition of maps is defined as follows.∨
cXi+1

Si+1 Xi+1/Xi ΣXi Σ(Xi/Xi91)
∨
cXi

Si+1

Σ
∨
cXi

Si Σ(Xi/Xi91) Σ2Xi91 Σ2(Xi91/Xi92) Σ
∨
cXi91

Si

It is enough to show that the dashed composition ΣXi →
Σ2Xi−1 is trivial. By tracing the construction of the maps
involved, it is easy to see that the map is given by

ΣXi
Σcfcod−−−−→ ΣXi/Xi−1

Σpinch−−−−→ Σ2Xi−1

which is equal to functorial action of Σ on pinch ◦ cfcod :
Xi → ΣXi−1. This is constant by definition. The case i = 0
follows by an explicit computation of the maps ∂1 and ∂0.

At this point, we have a proper definition for the cellular
chain complex of a CW structure. It remains to show that this
construction lifts to a functor from CWstr to Ch.

Let f∗ : X∗ → Y∗ be a cellular map. Because f∗ is cellular,
it determines a map Xi/Xi−1 → Yi/Yi−1. With a bit of help
from the equivalence e that we defined earlier, we can define
a map of sphere bouquets f̃i as follows:∨

cXi
Si e−1

−−→ Xi/Xi−1
fi/fi−1−−−−−→ Yi/Yi−1

e−→
∨

cYi
Si.

We may thus define the functorial action of f on i-chains,
f i : Hom(Z[cXi ],Z[cYi ]), by setting f i = bdeg f̃i. Let us verify
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that it is a chain map, i.e. that ∂i+1 ◦ f i+1 = f i ◦ ∂i+1. Using
the fact that bdeg respects suspension and composition, this is
equivalent to bdeg (di+1 ◦ f̃i+1) = bdeg (Σf̃i ◦ di+1). Let us
simply show that di+1 ◦ f̃i+1 = Σf̃i ◦ di+1. That is, we will
show that the outer square commutes in the diagram below:∨

cXi+1

Si+1 Xi+1/Xi ΣXi Σ(Xi/Xi91)
∨
cXi

Si+1

∨
cYi+1

Si+1 Yi+1/Yi ΣYi Σ(Yi/Yi91)
∨
cYi

Si+1

f̃i+1 fi+1/fi Σfi Σfi/fi−1 Σf̃i

This is immediate: the leftmost and rightmost squares com-
mute by construction of our functorial action, and the middle
squares commute by definition.

Thus, we have shown that any cellular map f∗ : X∗ → Y∗
gives rise to a chain map between the cellular chain complexes
of X∗ and Y∗. Due to space constraints, we omit the proofs
that this operation satisfies the two functor axioms, but we note
that they are very direct. This results in a functor cellChain :
CWstr → Ch. If we compose this functor with the nth
homology functor Hn : Ch → AbGrp, we obtain a functorial
definition of reduced cellular homology for CW structures. We
denote the resulting functor by H̃str

n : CWstr→ AbGrp.

C. The homology of a CW complex

Our end goal is to extend our cellular homology functor
to the category of CW complexes. To do so, we follow the
strategy laid out in Figure 1: first, we will need a lemma to
show that cellular homology is homotopy invariant.

Proposition 32. Let f∗ and g∗ be two parallel cellular maps.
Every cellular homotopy between f∗ and g∗, induces a chain
homotopy between cellChain(f∗) and cellChain(g∗).

The proof is standard but somewhat technical. Due to space
constraints, we omit it and refer to the computer formalisation.
Proposition 32 implies that cellChain descends to a functor
from Ho(CWstr) to Ho(Ch). As we already saw, the chain
homology functor Hn factors through Ho(Ch), meaning that
we can compose it with cellChain to express cellular homology
as a functor H̃str

n : Ho(CWstr)→ AbGrp. Therefore, we have
established that cellular homology is homotopy invariant.

In fact, a quick glance at the definition of cellular ho-
mology makes it clear that H̃str

n (X∗) only depends on the
(n + 1)-skeleton of X∗, so H̃str

n can actually be defined as a
functor from Ho(CWstr(n+1)) to AbGrp. Since abelian groups
form a univalent category, H̃str

n can even be extended to the
Rezk completion of Ho(CWstr(n+1)), which is Ho(CW(n+1)).
Composing the resulting functor with the truncation functor
from Ho(CW) to Ho(CW(n+1)) yields the desired definition
of the cellular homology functor H̃cw

n : Ho(CW)→ AbGrp.

D. The Eilenberg–Steenrod axioms

To be deserving of the title of a homology theory, our
definition should satisfy the Eilenberg–Steenrod axioms [16].
However, this raises yet another constructivity issue: the
modern formulation of these axioms involves wedge sums

indexed by arbitrary sets, which are not guaranteed to exist
in our category of CW structures. To remedy this, we work
with a finitary version of the axioms3. In what follows, CWstr⋆
denotes the category of pointed CW structures.

Definition 33 (Eilenberg–Steenrod homology). A reduced
homology theory is a Z-indexed family of functors Ẽn :
CWstr⋆ → AbGrp satisfying the following axioms.

Homotopy: For any n and cellular homotopy f∗ ∼ g∗, we
have that Ẽn(f∗) = Ẽn(g∗).

Suspension: For any n, there is an isomorphism Ẽn(X∗) ∼=
Ẽn+1((ΣX)∗) which is natural in X .

Exactness: For any cellular map f∗, the sequence

Ẽn(X∗)
Ẽn(f∗)−−−−→ Ẽn(Y∗)

Ẽn(cfcod∗)−−−−−−−→ Ẽn((Cf )∗)

is exact, meaning that ker Ẽn(cfcod∗) = im Ẽn(f∗).

Dimension: Ẽn(S0∗) is trivial for n ̸= 0 and isomorphic to Z
when n = 0.

Binary additivity: For any X∗, Y∗ : CWstr⋆, the canonical
map Ẽn(X∗)⊕ Ẽn(Y∗)→ Ẽn((X ∨Y )∗) is an isomorphism.

An important point is that we decided to define
the Eilenberg–Steenrod axioms over CWstr⋆ rather than
Ho(CW⋆). The reason for this is that the exactness axiom
involves cofibres of arbitrary maps, which are not guaran-
teed to exist in the category Ho(CW⋆) (see the discussion
around Corollary 16). Nevertheless, we do get a restricted
exactness axiom for H̃cw

n which involves only maps with a
finite domain as a consequence of the exactness of H̃str

n .
Before we prove exactness, however, let us show that the
suspension axiom is satisfied (skipping the homotopy axiom,
since it is an immediate consequence of Proposition 32). We
note that, unlike the other proofs in this paper, the following
proofs regarding the Eilenberg–Steenrod axioms only have
been partially formalised.

Proposition 34. The suspension axiom is satisfied by H̃str
n .

Proof. Let (CX
∗ , ∂

X
∗ ) and (CΣ

∗ , ∂
Σ
∗ ) be the augmented chain

complexes associated to X∗ and (ΣX)∗ respectively. Let
(ĈΣ

∗ , ∂̂
Σ
∗ ) := (CΣ

∗+1, ∂
Σ
∗+1) be the latter complex shifted by

1, and denote its chain homology groups by H̃Σ
n . We have

H̃Σ
n = H̃str

n+1((ΣX)∗) by construction. We construct a chain
map φ∗ : ĈΣ

∗ → CX
∗ as follows:

Z[cn] Z[c0] Z[2]

. . . ĈΣ
n . . . ĈΣ

0 ĈΣ
−1 Z

. . . CX
n . . . CX

0 CX
−1 1

Z[cn] Z[c0] Z

∂̂n+1 ∂̂n

φn

∂̂1 ∂̂0

φ0

∂̂−1

φ−1 φ−2

∂n+1 ∂n ∂1 ∂0

3After generalising our work from finitary to projective CW structures,
it should be possible to show the additivity axiom for any projective set
of indices, using techniques similar to those of Cavallo [17] and Buch-
holtz and Favonia [5].
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We simply set φn to be the identity when n ≥ 0, and let
φ−1 be the map forgetting the second generator. The fact
that the squares commute is a direct consequence of Proposi-
tion 30, apart from the second square from the right, whose
commutativity follows by construction of ∂̂0. Thus φn induces
an isomorphism ϕn : H̃str

n+1((ΣX)∗) = H̃Σ
n → H̃str

n (X∗)
on homology when n ≥ 1. Naturality is immediate as the
isomorphism is induced by the identity. When n = 0, we need
to be somewhat more careful since ∂̂0 and ∂0 have different
codomains. Nonetheless, their kernels trivially agree and so
we still obtain the desired isomorphism on homology. The
final non-trivial case we need to check is when n = −1. This
case amounts to showing that H̃Σ

−1 is trivial which follows
immediately by construction of ∂̂0 and ∂̂−1.

Let us continue with the exactness axiom. For this, we
need to characterise the behaviour of the boundary map on
pushouts. The proof, which we have to omit here due to
space constraints, proceeds by unfolding the definition of the
attaching maps in Definition 10 and some direct but tedious
computations.

Lemma 35. Let P∗ be the cellular pushout of some span
Y∗

f∗←− X∗
g∗−→ Z∗. The boundary map ∂Pn+1 factors as

Cp
n+1

∼−→ CX
n ⊕ CY

n+1 ⊕ CZ
n+1

∂′
n+1−−−→ CX

n−1 ⊕ CY
n ⊕ CZ

n
∼−→ CP

n

where ∂′n+1(x, y, z) := (−∂Xn x, ∂Yn+1 y+fn x, ∂
Z
n+1 z−gn x).

Proposition 36. The exactness axiom is satisfied by H̃str
n .

Proof. The fact that im (H̃str
n (f∗)) ⊆ ker (H̃str

n (cfcod∗))
follows from the functoriality of H̃str

n and the fact that
cfcod∗ ◦ f∗ is constant by definition of (Cf )∗. For the other
direction, let [y] : H̃str

n (Y∗) be an equivalence class (where
y : CY

n ) and assume it is in the kernel of the composite

map CY
n

cfcodn
↪−−−−→ Ccof

n
q−→ Ccof

n /∂cofn+1. A quick computation
reveals that the group Ccof

n is equal to CX
n−1 ⊕CY

n ⊕ 1n, and
that cfcodn y is equal to (0, y, 0). Therefore, our assumption
is equivalent to (0, y, 0) being in the image of ∂cofn+1. Using
Lemma 35, this means that y = ∂Yn+1 y0 + fn x for some
y0 : CY

n+1 and x : CX
n . Thus, [y] = [fn x] in H̃str

n (Y∗). Since
[fn x] = H̃str

n (f∗)[x], we are done.

Proposition 37. The dimension axiom is satisfied by H̃str
n .

Proof. The augmented chain complex associated to S0 is

. . .
∂3−→ 1

∂2−→ 1
∂1−→ Z[2] ∂0−→ Z ∂−1−−→ 1

∂−2−−→ 1
∂−3−−→ . . .

The homology of this complex is clearly concentrated in
degree 0 with H̃str

n (S0) ∼= Z.

Proposition 38. Binary additivity is satisfied by H̃str
n .

Proof. The direct sum H̃str
n (X∗)⊕ H̃str

n (Y∗) can be viewed as
the homology of the chain complex (CX

n ⊕ CY
n , ∂

X
n ⊕ ∂Yn ).

Under this identification, the map H̃str
n (X∗) ⊕ H̃str

n (Y∗) →
H̃str

n ((X ∨ Y )∗) corresponds to the chain map

. . . CY
n ⊕ CZ

n CY
n ⊕ CZ

n . . .

. . . C1

n ⊕ CY
n+1 ⊕ CZ

n+1 C1

n91 ⊕ CY
n ⊕ CZ

n . . .

∂Y
n ⊕∂Z

n

0⊕∂Y
n ⊕∂Z

n

where the bottom row is the reduced cell complex associated
to (X ∨ Y )∗ using the cell structure for pushouts. The
computation of the boundary map comes from Lemma 35. As
C1

n vanishes for n ≥ 2, the vertical maps are isomorphisms
in these dimensions and hence we obtained the desired iso-
morphism of homology in groups. The additional 0-cell in
(X ∨B)0 forces us to construct the inverse of the prospective
isomorphism explicitly in dimensions n = 1 and n = 0. The
construction is completely standard and we refer to May [14]
for details.

Theorem 39. The functor H̃str
n : CWstr⋆ → AbGrp is a

reduced homology theory.

Finally, we arrive at the corresponding result for H̃cw
n (where

the notion of exactness is restricted to mention only the
pushouts which exist in Ho(CW⋆), i.e. those of maps with
finite CW structures as domains).

Corollary 40. The functor H̃cw
n : Ho(CW⋆) → AbGrp is a

reduced homology theory.

Some care has to be taken when inferring Corollary 40
from Theorem 39. As H̃cw

n concerns the homology of arbitrary
types merely equipped with a CW structure, we are only
able to automatically infer the two axioms which happen to
be propositions, namely exactness and binary additivity. The
dimension axiom follows because it concerns S0, a closed type
for which we have an explicit CW structure. Finally, we need
to take care of the suspension axiom. Its statement is a set
and not a proposition, which prevents us from using the usual
elimination principle for truncations, but we can instead use
the set elimination principle of Kraus [18, Chapter 8.1.1]. We
need to prove the theorem whenever X has an explicit CW
structure (using Theorem 39), and then show that the proof
does not depend on the choice of CW structure, which is a
direct consequence of naturality.

V. PART 4: THE HUREWICZ THEOREM

As previously mentioned, homology groups are quite similar
in spirit to homotopy groups, so one might hope that the two
notions are connected in some way. The answer lies in the
Hurewicz theorem, which states that if a space is n-connected,
then its homology groups coincide with its homotopy groups
up to dimension n+1 (up to abelianisation in the case n = 0).

A. Approximating n-connected spaces

The classical proof of the Hurewicz theorem for cellular
homology takes an arbitrary n-connected CW complex, and
replaces its CW structure with an alternative one with no non-
trivial cells in dimension < n + 1. This is done by defining
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the new set of (n + 1) cells to be the generators of the
(n + 1)-fst homotopy group of the space, from which the
Hurewicz theorem will follow. Unfortunately, this approach
will not work in our framework since the homotopy groups of a
finite CW complex are not necessarily finitely generated – this
applies to, for instance, π2(S1∨S2). Yet, perhaps surprisingly,
we are able to give a constructive proof of the Hurewicz
theorem by using a different construction for the alternative
structure of n-connected CW complexes.

Definition 41. We say that a CW structure X∗ is Hurewicz
n-connected if

∣∣cX0 ∣∣ = 1 and
∣∣cXi ∣∣ = 0 for 0 < i ≤ n. We use

the same terminology for CW complexes which merely have a
Hurewicz n-connected CW structure.

We remark that being Hurewicz n-connected is a property
(i.e. a proposition). The following lemma gives a few elemen-
tary consequences of Hurewicz n-connectedness.

Lemma 42. Let X∗ be a CW structure. If X∗ is Hurewicz
n-connected, then

1) Xi ≃ 1 for 0 ≤ i ≤ n,
2) Xn+1 ≃

∨
cXn+1

Sn+1,
3) Xi is n-connected for i ∈ N ∪ {∞}.

Item 3 tells us that Hurewicz n-connectedness implies the
usual notion of n-connectedness. The other direction is much
less obvious – especially constructively. Nonetheless, we can,
in fact, prove it. As a warm-up, let us tackle the case n = 0.

Proposition 43. For any 0-connected structure X∗, there is a
Hurewicz 0-connected CW structure X ′

∗ s.t. Xi=X
′
i for i≥1.

Proof. We proceed by induction on
∣∣cX0 ∣∣, i.e. the size of X0

(indeed, we have X0 ≃ cX0 ). If
∣∣cX0 ∣∣ = 0, this contradicts the

0-connectedness of X∗. If
∣∣cX0 ∣∣ = 1, then X∗ is already of

the right form and there is nothing to prove. Consider now
the case

∣∣cX0 ∣∣ > 1. We will be done if we can show that X1

may be obtained as the pushout of c′0
α′

←− S0 × c′1
snd−−→ c′1 for

some α′ and some finite sets c′0 and c′1 satisfying |c′0| <
∣∣cX0 ∣∣.

Let us carry out the construction. Some of the arguments may
look non-constructive but we emphasise that they are justified
as they concern finite sets.

First, note that there must be some a0 : c1 such that
α0(north, a0) ̸= α0(south, a0). Indeed, if this were not the
case, we would have that ∥X1∥0 ≃ X0. By combining this
equation with ∥X∞∥0 ≃ ∥X1∥0, we would obtain that ∥X∞∥0
is isomorphic to X0, which is not contractible since

∣∣cX0 ∣∣ > 1.
Now, by permuting the elements of c1 and c0, we may assume
that the last element a0 : c1 satisfies α0(north, a0) =

∣∣cX0 ∣∣−1
and α0(south, a0) =

∣∣cX0 ∣∣−2. We define a new attaching map
α′
0 : S0 × (cX1 − 1)→ (cX0 − 1) by

α′
0(x, y) =

{
α0(x, y) if α0(x, y) < |c0| − 1∣∣cX0 ∣∣− 2 otherwise

The 1-skeleton X ′
1 obtained by pushing out along α′

0 is easily
identified with X1, and thus we are done as we have decreased
the cardinality of the codomain of the attaching map by 1.

Before turning to higher dimensions, let us define a useful
alteration of the notion of CW structure. In what follows,
we abuse notation for the sake of convenience and interpret∨

A S−1 as the empty type rather than than the unit type.

Definition 44. A good CW structure is a pointed CW structure
X∗ whose attaching maps αi : c

X
i+1 × Si → Xi lift to maps

defined over sphere bouquets, i.e. for all i there exists a
matching α′

i :
∨

cXi+1
Si →⋆ Xi such that Xi+1 ≃ Cα′

i
.

Lemma 45. Let X∗ be a good CW structure. X∗ is Hurewicz
n-connected iff Xn+1 ≃

∨
B Sn+1 and Xn+2 ≃ Cf where A

and B are finite types and f :
∨

A Sn+1 →
∨

B Sn+1.

This lemma follows immediately from the definition of good
structures and Lemma 42. We remark that good CW structures
always are Hurewicz 0-connected. The converse also holds for
connectedness reasons.

Proposition 46. Any finite Hurewicz 0-connected CW struc-
ture is merely good.

We are now ready to prove the main technical theorem of
which states that the synthetic standard notion of connected-
ness coincides, for CW complexes, with the more analytic
notion of Hurewicz connectedness.

Theorem 47. Let X∗ be an n-connected CW structure. There
merely exists a Hurewicz n-connected CW structure X ′

∗ such
that Xi = X ′

i for i > n.

Proof. We proceed by induction on n. The base case is
given by Proposition 43. For the inductive step, let X∗ be
n-connected. In particular, X∗ is (n − 1)-connected, so by
induction hypothesis we may assume that it is Hurewicz
(n−1)-connected. Since n > 0, this structure is also Hurewicz
0-connected and we may assume that it is good (up to
some fixed finite dimension k ≫ n) by Proposition 46. Us-
ing Lemma 45, we know that Xn ≃

∨
A Sn and Xn+1 ≃ Cf

for f :
∨

B Sn →
∨

A Sn where A and B are some finite
sets. Using Lemma 45 again, we are done if we can construct
sets A′, B′ and f ′ :

∨
B′ Sn+1 →

∨
A′ Sn+1 s.t. Xn+2 ≃ Cf ′

(note that we are then implicitly setting X ′
n+1 :=

∨
A′ Sn+1).

Consider the following diagram where C = cXn+2.∨
C

Sn+1
1

∨
A

Sn Cf Xn+2

1
∨
B

Sn+1 Xn+2 ∨
∨
A

Sn+1

αn+1

cfcod

⌟

⌟ ⌟

The top square is a pushout square because X(k)
∗ is a good

CW structure (we have identified Xn+1 with Cf ). The fact
that the bottom-left square is a pushout follows by the first
part of Lemma 2. The bottom right-square is less evident.
Consider the composite map

∨
A Sn → Xn+2 on the second

row. Using the fact that X∞ (and hence also Xn+2) is n-
connected, it is an easy consequence of Lemma 4 that this
map is merely constant. As we are proving a proposition, we
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may ignore the word ‘merely’ and assume that it is constant.
This means that the composition of the two bottom squares is
a pushout by the second part of Lemma 2. Consequently, the
bottom-right square is also a pushout square. Let us write β for
the map

∨
C Sn+1 →

∨
B Sn+1 that is described by the middle

column of the diagram. We have shown that Cβ ≃ Xn+2 ∨∨
A Sn+1. Another way to interpret this equivalence is that we

gave the space Xn+2∨
∨

A Sn+1 a good Hurewicz n-connected
CW structure V , with (n+1)-skeleton Vn+1 =

∨
B Sn+1 and

attaching map αn+1 = β.
Consider the inclusion inr :

∨
A Sn+1 → Xn+2 ∨

∨
A Sn+1.

This happens to be a map between CW complexes, so we may
approximate it using Theorem 15. Doing so produces a map
inrn+1 :

∨
A Sn+1 → Vn+1 =

∨
B Sn+1, which factors inr

as
∨

A Sn+1 inrn+1−−−−→
∨

B Sn+1 ιn+1−−−→ Xn+2 ∨
∨

A Sn+1. Now
consider the following diagram.∨

A

Sn+1
∨
B

Sn+1 Xn+2 ∨
∨
A

Sn+1

1 Cinrn+1 Xn+2

inrn+1

⌟ ⌟

The left square is a pushout by definition, and the total
square is a pushout for elementary reasons. Thus, the right
square is a pushout. Replacing Xn+2 ∨

∨
A Sn+1 with Cβ ,

we conclude that Xn+2 is obtained as the pushout of the
span Cinrn+1

←
∨

B Sn+1 → Cβ . An application of the 3×3
lemma tells us that this is equivalent to cofibre of the map
inrn+1 ∨ β :

∨
A+C Sn+1 →

∨
B Sn+1. Thus, we have shown

that Xn+2 is of the desired form and we are done.

Corollary 48 (The Hurewicz Approximation Theorem). A CW
complex is n-connected iff it is Hurewicz n-connected.

B. From homotopy to homology

In order to state our final theorem, we will need the help
of the Hurewicz homomorphism. We define it using H̃cw

n , but
remark that the construction carries over to H̃str

n .

Definition 49. Let X be a CW complex. Define the Hurewicz
homomorphism4 η : πn(X) → H̃cw

n (X) on canonical ele-
ments f : Sn →⋆ X by letting η(|f |) : H̃cw

n (X) be the image
of 1 under the composition Z ∼−→ H̃cw

n (Sn) f∗−→ H̃cw
n (X).

The Hurewicz theorem will provide us with a condition for
when this homomorphism is an isomorphism. Before we state
and prove it, let us try to understand the groups involved in
the ‘simple’ special case when X is the cofibre Cf of some
map of (finite) sphere bouquets f :

∨
A Sn →

∨
B Sn. This

special case will turn out to inform the proof for the general
case. As Cf has an explicit CW structure, let us switch our
homology theory to H̃str

n . Now let us compute H̃str
n (Cf ) using

the exactness axiom: consider the sequence∨
A

Sn f−→
∨
B

Sn cfcod−−→ Cf
cfcod−−→ C(cfcod:

∨
B

Sn→Cf ) ≃
∨
A

Sn+1

4The fact that this map is a homomorphism boils down to the easy fact
that the (group) addition of cellular maps Sn →⋆ X is again cellular.

where the final equivalence is the usual characterisation of
Xn+1/Xn using that Cf has a CW structure. This is a cofibre
sequence, and so the following sequence is exact

H̃str
n (

∨
A Sn) f∗−→ H̃str

n (
∨

B Sn) cfcod∗−−−→ H̃str
n (Cf )→ 0 (1)

where the final 0 comes from the fact that H̃str
n vanishes on∨

A Sn+1. We can compute the first two homology groups
using additivity, and thus we see that H̃str

n (Cf ) ∼= Z[B]/Z[A].
Let us now compute the domain of η, i.e. the group πn(Cf ).

Proposition 50. For any f :
∨

A Sn →
∨

B Sn where n ≥ 1
and A and B are finite types, there is an exact sequence

πn (
∨

A Sn) f∗−→ πn (
∨

B Sn) cfcod∗−−−−→→ πn(Cf ).

Proof sketch. This follows from the Seifert–Van Kampen the-
orem [1, Example 8.7.17] in the case n = 1, and from the
Blakers–Massey theorem [19] in the case n > 1.

We are now almost ready for the Hurewicz theorem. In
order to state it, let us define πab

n to be the abelianisation of
the homotopy group functor, i.e. πab

n (X) := πn(X)/ im [−,−]
where [−,−] : πn(X)× πn(X)→ πn(X) is the commutator
defined by [x, y] = xyx−1y−1. As higher homotopy groups
are already abelian, the quotient map πn(X)→ πab

n (X) is an
isomorphism; in what follows, we will simply interpret πab

n

as πn when n ≥ 2. We will, with some abuse of notation,
view the Hurewicz homomorphism η as being defined over
πab
n . This is justified as the codomain is an abelian group.

Theorem 51. The Hurewicz homomorphism η : πab
n (X) →

H̃cw
n (X) is an isomorphism for any (n − 1)-connected CW

complex X .

Proof. Since we are proving a proposition, we can assume
that we have a CW structure X∗ and switch our homology
theory to H̃str

∗ . Since the map Xn+1 → X∞ is n-connected,
the canonical map πn(Xn+1) → πn(X∞) is an equivalence.
Similarly, H̃str

n (X∗) = H̃str
n (X

(n+1)
∗ ) by definition. Thus, it

suffices to show the theorem for the (n + 1)-skeleton of X .
As X is Hurewicz (n − 1)-connected, we may assume that
Xn =

∨
B Sn and that Xn+1 = Cf for some α :

∨
A Sn →∨

B Sn. Elementary algebra tells us that abelianisation is right-
exact and thus preserves the exact sequence in Proposition 50.
Let us compare this sequence (top sequence below) to the
corresponding one for homology in (1) (bottom sequence
below).

πab
n

(∨
A Sn

)
πab
n

(∨
B Sn

)
πab
n (Cf )

Z[A] Z[B] Z[B]/Z[A]

H̃str
n

((∨
A Sn

)
∗

)
H̃str

n

((∨
B Sn

)
∗

)
H̃str

n ((Cf )∗)

f∗

∼

cfcod∗

∼ ∼

f

∼ ∼ ∼

f∗ cfcod∗

The isomorphisms πab
n (

∨
C Sn) ∼= Z[C] for C ∈ {A,B}

are easily constructed using the Seifert–Van Kampen theorem
[1, Example 8.7.17] when n = 1 and the Blakers–Massey
theorem [19] when n > 1. On homology, the isomorphism is
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a direct consequence of the Eilenberg–Steenrod axioms (but
can also be obtained by simply inspecting the related chain
complex). The fact that the two left-most squares commute
holds almost by definition of the maps involved. Hence we
obtain an isomorphism πab

n (Cf ) ∼= H̃str
n ((Cf )∗). We simply

have to verify that this isomorphism is equal to η. It is enough
to check this on the inclusion of generators from πab

n (
∨

B Sn)
– but here there is nothing to prove: simply unfolding the
definitions involved, it is immediate that the desired equality
holds.

VI. CONCLUSIONS AND FUTURE WORK

We hope the reader is now convinced that the theory of CW
complexes and cellular homology has a home in HoTT. The
fact that the results we have proved in this paper – in particular
the approximation theorems – are at all provable without any
form of choice was initially a surprise to us. The theory
of CW complexes and cellular homology as it is developed
classically often ‘feels’ constructive, with many constructions
being inductive, but it makes heavy use of choice principles.
An important takeaway is that this feeling is justified: a
significant part of this theory is constructive.

However, the initial motivation behind this project was
not to carry out a case study in constructive mathematics.
Originally, our development was motivated by the recent proof
of the Serre Finiteness theorem by Barton and Campion [20].
This proof relies on homology computations and the Hurewicz
theorem, thus the formalisation that accompanies this paper
should be helpful to the ongoing formalisation of the Serre
Finiteness theorem (by, in particular, Milner [21]).

This paper also aims to be integrated into a larger project
including Mörtberg, which seeks to use cellular (co)homology
to reduce homological arguments in HoTT to concrete com-
putations which we can run in proof assistants. The canonical
example is the computation of the Brunerie number [2],
a number whose value is given by a certain cohomology
computation which, as it is constructively defined in HoTT,
should simply be produced by evaluating it in a proof assis-
tant, but whose evaluation is computationally infeasible. Our
hope is that if these computations are ported to a cellular
(co)homology theory, where many of them should become
feasible, paving the way for proofs by computation in HoTT.

It would also be interesting to use our cellular approach to
explore more advanced results and constructions such as the
Steenrod squares and the (currently open) Künneth formula.
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