
ar
X

iv
:2

30
2.

00
15

1v
1

 [
m

at
h.

A
T

]
 1

 F
eb

 2
02

3

Formalizing π4(S
3) ∼= Z/2Z and Computing a

Brunerie Number in Cubical Agda

Axel Ljungström and Anders Mörtberg

Department of Mathematics

Stockholm University

Email: axel.ljungstrom@math.su.se and anders.mortberg@math.su.se

Abstract—Brunerie’s 2016 PhD thesis contains the first syn-
thetic proof in Homotopy Type Theory (HoTT) of the classical
result that the fourth homotopy group of the 3-sphere is Z/2Z.
The proof is one of the most impressive pieces of synthetic homo-
topy theory to date and uses a lot of advanced classical algebraic
topology rephrased synthetically. Furthermore, Brunerie’s proof
is fully constructive and the main result can be reduced to the
question of whether a particular “Brunerie number” β can be
normalized to ±2. The question of whether Brunerie’s proof
could be formalized in a proof assistant, either by computing
this number or by formalizing the pen-and-paper proof, has since
remained open. In this paper, we present a complete formalization
in the Cubical Agda system, following Brunerie’s pen-and-paper
proof. We do this by modifying Brunerie’s proof so that a key
technical result, whose proof Brunerie only sketched in his thesis,
can be avoided. We also present a formalization of a new and
much simpler proof that β is ±2. This formalization provides
us with a sequence of simpler Brunerie numbers, one of which
normalizes very quickly to −2 in Cubical Agda, resulting in a
fully formalized computer assisted proof that π4(S

3) ∼= Z/2Z.

I. INTRODUCTION

Homotopy theory originated in algebraic topology, but is by

now a central tool in many branches of modern mathematics,

such as algebraic geometry and category theory. One of the

central notions of study in homotopy theory is that of the

homotopy groups of a space X , denoted πn(X). These groups

constitute a topological invariant, making them a powerful tool

for establishing whether two given spaces can or cannot be

homotopy equivalent. The first two such groups of a space

are easy to understand: π0(X) characterizes the connected

components of X and π1(X) is the fundamental group, i.e. the

group of equivalence classes consisting of the loops contained

in X up to homotopy. This idea generalizes to higher values

of n, for which πn(X) consists of n-dimensional loops up

to homotopy. For many spaces, these groups tend to become

increasingly esoteric and difficult to compute for large n. This

is true also for seemingly tame spaces like spheres, for which

πn(S
m) in general is highly irregular when n > m ≥ 2.1 This

paper concerns the first computer formalization of the classical

result that π4(S
3) ∼= Z/2Z, a result which is particularly

interesting because it gives the whole first stable stem of

homotopy groups of spheres, i.e. πn+1(S
n) for n ≥ 3.

1See [1, Figure 2.1] for a table of πn(Sm) for small n and m.

The fact that π4(S
3) ∼= Z/2Z was proved already in the

1930’s by Pontryagin using cobordism theory, but we instead

follow the synthetic approach to homotopy theory developed in

Homotopy Type Theory (HoTT) and popularized by the HoTT

Book [2]. In this new approach to homotopy theory, spaces are

represented directly as (higher inductive) types and homotopy

groups are computed using Voevodsky’s univalence axiom [3].

This gives a logical approach to homotopy theory, suitable

for computer formalization in proof assistants based on type

theory, while also making it possible to interpret results in any

suitably structured (∞, 1)-topos [4].

The basis for our formalization is the 2016 PhD thesis

of Brunerie [1] which contains the first synthetic proof in

HoTT that π4(S
3) ∼= Z/2Z. The proof is one of the most

impressive pieces of synthetic homotopy theory to date and

uses advanced machinery from classical algebraic topology

developed synthetically, including the symmetric monoidal

structure of smash products, (integral) cohomology rings,

the Mayer-Vietoris and Gysin sequences, the Hopf invariant,

Whitehead products, etc. The formalization of Brunerie’s proof

has since remained open, primarily due to the highly technical

nature of some of the proofs. In this paper, we will present

such a formalization in Cubical Agda [5], a cubical exten-

sion of the Agda proof assistant [6] with native support for

computational univalence and higher inductive types (HITs).

In addition to being a very impressive proof in synthetic

homotopy theory, Brunerie’s proof is particularly interesting

as it is fully constructive. The proof consists of two parts,

with the first one culminating in Chapter 3 with the definition

of a number β : Z such that π4(S
3) ∼= Z/βZ. Since then, this

β has been commonly referred to as the Brunerie number.

Brunerie writes the following about it:

This result is quite remarkable in that even though

it is a constructive proof, it is not at all obvious how

to actually compute this [β]. At the time of writing,

we still haven’t managed to extract its value from its

definition. [1, Page 85]

In fact, [1, Appendix B] contains a complete and concise

http://arxiv.org/abs/2302.00151v1

definition of β as the image of 1 under a sequence of 12 maps:

Z Ω(S1) Ω2(S2) Ω3(S3)

Ω3(S1 ∗ S1) Ω3(S2) Ω3(S1 ∗ S1) Ω3(S3)

Ω2‖S2‖2 Ω‖Ω(S2)‖1 ‖Ω2(S2)‖0 Ω(S1) Z

By implementing this number in a proof assistant with compu-

tational support for univalence and HITs, one should be able

to normalize it using a computer to establish that β = ±2
and hence that π4(S

3) ∼= Z/2Z. In 2016, by the time Brunerie

was finishing his thesis, there were some experimental proof

assistants based on the cubical type theory of [7], but these

were too slow to perform such a complex computation. So,

instead of relying on normalization, Brunerie spends the

second part of the thesis (Chapters 4–6) to prove, using a

lot of the advanced machinery mentioned above, that |β| is

propositionally equal to 2. However, if one were instead able

to compute the number automatically in a proof assistant, this

equality would hold definitionally—effectively reducing the

complexity and length of the proof by an order of magnitude.

The intriguing possibility of a computer assisted formal

proof made many people interested and countless attempts to

normalize Brunerie’s β have been made using increasingly

powerful computers. However, to date, no one has succeeded

and it is still unclear whether it is normalizable in a reasonable

amount of time. In light of this, it is natural to wonder whether

it is possible to simplify Brunerie’s number in order to be

able to compute it. For example, Brunerie’s original definition

only involves 1-HITs, as the status of higher HITs was still

quite understudied at the time. With a better understanding

of higher HITs [8], [9], [10], one quickly sees that the first

3 maps can be combined into one sending 1 to the 3-cell of

S3 defined as a 3-HIT and not as an iterated suspension as

in Brunerie’s thesis. Unfortunately, simple optimizations like

this do not seem to reduce the complexity of the computation

enough and all attempts to run it have thus far failed.

After several unsuccessful attempts at optimizing the com-

putation, we instead decided to formalize the second half

of Brunerie’s thesis. However, this is by no means straight-

forward. The first issue appears already in Section 4.1 of

Chapter 4, a chapter concerning smash products of spheres.

The main result of the section is Proposition 4.1.2, which says

that the smash product is a 1-coherent symmetric monoidal

product on pointed types. However, the proof of this result is

just a sketch and Brunerie writes the following about it:

The following result is the main result of this section

even though we essentially admit it. [1, Page 90]

Unfortunately, this result is then used to construct integral

cohomology rings, H∗(X), whose cup product, ⌣, appears

in the definition of the so called Hopf invariant which is

crucially used to prove that |β| is 2. While one might be

convinced that Brunerie’s informal proof sketch is correct, it

is not obvious how one convinces a proof assistant of this. A

complete formalization would either have to fill in the holes

in the proof sketch or find an alternative construction which

avoids Proposition 4.1.2. In fact, Brunerie tried very hard to

fill these holes using Agda metaprogramming in Agda [11].

However, he never managed to typecheck his computer gen-

erated proof of the pentagon identity. Hence, this approach

also seems infeasible with current proof assistant technology.

Luckily, Brunerie, Ljungström and Mörtberg [12] recently

gave an alternative synthetic definition of the cup product on

H∗(X) which avoids smash products. This has allowed us to

completely skip the problematic Chapter 4 and in particular

Proposition 4.1.2, while still following the proof strategy in

Chapters 5 and 6. Having a possible strategy for a formal

proof, we have then been able to embark on the ambitious

project of formalizing Brunerie’s proof. Even though we do

not need any theory about smash products, there was still a

lot left to formalize and our final formalization closely follows

Brunerie’s proof, except for various smaller simplifications and

adjustments which we will discuss in the paper.

In addition to this, we have also formalized a new proof by

Ljungström [13] which completely circumvents Chapters 4–6.

This major simplification builds on manually calculating the

image of the element η : π3(S
2), corresponding to β under

the isomorphism π3(S
2) ∼= Z, by dividing this isomorphism

into several maps, tracing η in each step. In particular, the

new proof is completely elementary and does not rely on

advanced tools such as cohomology. The elements that one

obtains while tracing η are all new “Brunerie numbers” that

should normalize to ±2. In fact, one of these normalizes, in

just under 4 seconds on a regular laptop, to −2 in Cubical

Agda. Although we still cannot compute Brunerie’s original

definition, this work can be seen as an alternative solution to

Brunerie’s conjecture about obtaining a computational proof

that π4(S
3) ∼= Z/2Z which relies on simplifying the Brunerie

number until it becomes effectively computable.

Outline. The paper closely follows the structure of Brunerie’s

proof. In Section II, we discuss key results from HoTT that

we will need and their formalization in Cubical Agda.

Section III, which roughly corresponds to Chapter 2 of

Brunerie’s thesis, contains some first results on homotopy

groups of spheres—e.g. the computation of πn(S
m) for n ≤

m. We then give Brunerie’s definition of β and prove that

π4(S
3) ∼= Z/βZ, the formalization of which involves the

James construction and Whitehead products. The remainder of

the paper is then devoted to the formalization of the different

proofs that β = ±2. We first discuss the formalization of

Chapters 4–6 of Brunerie’s proof in Section V. This involves

a lot of technical machinery like cohomology, the Hopf

invariant, etc. We then, in Section VI, turn our attention to

the new elementary proof that β = ±2 and the new Brunerie

number which quickly normalizes to −2 in Cubical Agda.

We conclude in Section VII with a discussion and comparison

of the different formal proofs, as well as some directions for

future work.

Formalization. All results in the paper have been formalized

in Cubical Agda and is part of the agda/cubical library

(https://github.com/agda/cubical/). The code in the paper is

mainly literal Agda code taken verbatim from the library, but

we have taken some liberties when typesetting, e.g. shortening

notations and omitting some universe levels. A Cubical Agda

summary file linking the formalization and paper can be found

here. The development typechecks with Agda’s --safe flag,

which ensures that there are no admitted goals or postulates.

II. HOMOTOPY TYPE THEORY IN Cubical Agda

In this section, we give a concise summary of the key

HoTT concepts needed for the proofs and their formalization

in Cubical Agda. This roughly corresponds to [1, Chap. 1].

For a more in-depth introduction, see the HoTT Book [2]

which also serves as a reference for the formal language “Book

HoTT”. In this paper, we will present many things with cubical

notations, but almost all of the results also hold with minor

changes in Book HoTT where paths are represented using

Martin-Löf’s inductive Id-types [14] instead of cubical path

types. In Section VII we will discuss in more detail which

proofs crucially rely on cubical features.

All of the results presented in this section were already part

of the agda/cubical library before we began our formaliza-

tion and, while useful as a resource for our notations, experts

on HoTT and Cubical Agda can safely skim this section.

A. Elementary HoTT Notions and Cubical Agda Notations

We write (x : A) → B for dependent function types and

denote the identity function by idA : A → A. We write

Σx:A(B x) for the dependent pair type and fst and snd for

its projection maps. In what follows, we mean by a pointed

type a dependent pair (A, ⋆A) consisting of a type A and a

fixed basepoint ⋆A : A. For ease of notation, we will often

omit the basepoint and simply write A for the pointed type

(A, ⋆A). Given two pointed types A and B, the type of pointed

functions A→⋆ B consists of pairs (f, ⋆f) where f : A→ B
and ⋆f : f ⋆A≡ ⋆B witnesses basepoint preservation. Again,

we simply write f : A→⋆ B and take ⋆f implicit.

HoTT supports inductive types, i.e. types inductively gener-

ated by their constructors/points. We write Bool for the type of

booleans and 1 for the unit/singleton type with a single point

⋆A. A defining feature of HoTT, as opposed to plain Martin-

Löf type theory [15], is the existence of higher inductive types

(HITs). This is a generalization of inductive types where we

are not only allowed to specify the generating points of the

type in question, but also identifications between these points

(and possibly identifications of these identifications, and so

on). This is useful for defining quotient types, but also for

defining spaces when working in the types-as-spaces interpre-

tation of HoTT (see e.g. [2, Table 1] and [16]). Cubical Agda

natively supports HITs and a type representing the circle can

be defined as follows:

data S¹ : Type where

base : S¹
loop : base ≡ base

Here, base≡ base denotes the type of identifications of base

with itself. This is interpreted as the type of paths from base

to itself when viewing S
1 as a space. Hence, the above HIT

captures precisely the fact that the circle is a cell complex with

one 0-cell (base) and one 1-cell (loop). We always take S
1 to

be pointed by base. In order to discuss the induction principle

for S
1, we need to discuss paths in more detail. Cubically,

paths correspond to functions out of the unit interval, just like

in traditional topology. In Cubical Agda, there is a primitive

interval type2 I with endpoints i0 and i1. A path of type x≡ y
between two points x, y : A is a function p : I → A such

that p i0 = x and p i1 = y judgmentally. For instance, refl, the

constant path at a point x, is defined by:

refl : (x : A) → x ≡ x

refl x = λ i → x

Note that we use “=” for definitional/judgmental equality and

“≡ ” for Cubical Agda’s path-equality. This can be contrasted

with the HoTT Book [2] which uses the opposite convention

where “=” is propositional/typal equality.

This type of notational conventions is not the only difference

between Cubical Agda and Book HoTT. Many proofs that are

complicated in Book HoTT become remarkably direct using

the direct treatment of equality using path types. For instance,

function extensionality and its inverse funExt− are one-liners

[5, Sect. 2.1], while in Book HoTT, this is typically proved as a

consequence of the univalence axiom using a rather ingenious

proof. Another elementary example of a proof involving ≡
is cong (called ap in Book HoTT), which applies a function

to a path:

cong : (f : A → B) (p : x ≡ y) → f x ≡ f y

cong f p i = f (p i)

Although the treatment of paths in Cubical Agda differs

somewhat from Book HoTT, we may still prove path induc-

tion: for any dependent type B : (y : A) (p : x≡ y) → Type,

all dependent functions f : (y : A) (p : x≡ y) → B xp are

uniquely determined by f x (reflx). In Book HoTT, this can be

used, among other things, to define the notion of a dependent

path, which formalizes the situation when two points a : A
and b : B are equal up to a path p : A≡B. In Cubical Agda,

however, the type of dependent paths is primitive:

PathP : (A : I → Type) → A i0 → A i1 → Type

In fact, ≡ is just the special case of PathP where the

line of paths (A : I → Type) is constant. We are now

ready to describe the induction principle of S
1. A dependent

function f : (x : S
1) → B x is determined by a point

b : B base and a loop ℓ : PathP(λi → B(loop i)) b b.
In Cubical Agda, this would be written using pattern

matching, as in the left-most definition below, which is

introduced side-by-side with the way it would commonly

2For technical reasons, this is actually just a “pre-type” in Cubical Agda.

https://github.com/agda/cubical/
https://github.com/agda/cubical/blob/master/Cubical/Papers/Pi4S3.agda

be written in informal HoTT (such as in Brunerie’s thesis):

f base = b

f (loop i) = ℓ i

f(base) = b

apf (loop) = ℓ

B. More Higher Inductive Types

Let us now introduce the remaining HITs used in [1]. These

come equipped with induction principles analogous to that of

S
1. To define higher spheres, we need suspensions:

data Susp (A : Type) : Type where
north : Susp A

south : Susp A

merid : A → north ≡ south

We always take suspensions to be pointed by north. We may

now define the n-sphere, for n ≥ 1, by S
n = Suspn−1

S
1

where Suspn−1 denotes (n − 1)-fold suspension. We also

define S
−1 = ⊥ (the empty type) and S

0 = Bool. We remark

that we could equivalently have defined S
1 as the suspension

of S
0 as is done in [1]. Our reason for not doing so is that

certain functions using S
1 appear to compute better with the

base/loop definition. Furthermore, this is the definition used

in already existing code in the agda/cubical library.

We may also capture the (homotopy) pushout of a span

B
f
←− A

g
−→ C by the following HIT:

data Pushout (f : A → B) (g : A → C) : Type where

inl : B → Pushout f g

inr : C → Pushout f g

push : (a : A) → inl (f a) ≡ inr (g a)

We use pushouts to define the wedge sum of two pointed types,

denoted A∨B, the join of two types, denoted A *B, and the

cofiber of a map f : A→ B, denoted cofib f :

1 B A×B B A B

A A∨B A A *B 1 cofib f

fst

snd f

yyy

Two particularly important functions out of wedge sums are:

∇ : A ∨ A → A
∇ (inl x) = x

∇ (inr x) = x

∇ (push ⋆1 i) = ⋆A

i∨ : A ∨ B → A × B
i∨ (inl a) = (a , ⋆B)

i∨ (inr b) = (⋆A , b)

i∨ (push ⋆1 i) = (⋆A , ⋆B)

C. Truncation levels and n-truncations

An important concept in HoTT is Voevodsky’s h-levels [17],

which gives rise to the notion of an n-type. Since types in

HoTT are interpreted as spaces (or rather, as homotopy types),

they are not only determined by their points but also by which

higher paths they may contain. We say that a type A is an

n-type if all (n+1)-dimensional structure of A is trivial. For-

mally, this is captured by an inductive definition. We say that

A is a (−2)-type if it is contractible, i.e. consisting of a single

point, as captured by isContrA = Σa0:A((a : A) → a0≡ a).

We inductively say that A an (n+1)-type if for any x, y : A,

the type x≡ y is an n-type. We call (−1)-types propositions

and 0-types sets.

We can turn any type A into an n-type by n-truncation,

denoted ‖A ‖n. We often use direct definitions of (−1)- and 0-

truncation in our formalization, and similar constructions work

for any fixed value of n, but not when n is arbitrary. For higher

n we rely on the hub-and-spoke construction [2, Sect. 7.3].

One caveat with truncations is that a map f : A→ B does not,

in general, induce a map f : ‖A ‖n → B. This is, however,

the case when B is an n-type. In particular, f always induces

a function ‖ f ‖n : ‖A ‖n → ‖B ‖n.

D. Univalence, loop spaces, and h-spaces

In order to introduce Voevodsky’s univalence principle [3],

we need to define the (homotopy) fiber of a function. Given a

function f : A→ B and a point b : B, we define the fiber of

f over b by fib f b = Σx:A(f a≡ b). We say that f : A → B
is an equivalence, written f : A ≃ B, if fib f b is contractible

for all b : B. In order to prove that a function f : A → B is

an equivalence, it suffices to provide an inverse f− : B → A
and two paths f ◦ f−≡ idB and f− ◦ f ≡ idA. If f is also

pointed, we write f : A≃⋆B.

Univalence states that the canonical map A≡B → A ≃ B,

defined by path induction, is an equivalence. In particular, we

get a map ua : A ≃ B → A≡B promoting equivalences to

paths. This provides us with a useful method for transferring

proofs between equivalent types.

Transferring proofs is, however, not the only use case of

univalence in HoTT. It can also be used to characterize loop

spaces of HITs. This is often done using the encode-decode

method [2, Sect. 8.1.4], a type theoretic analogue of proofs by

contractibilty of total spaces of fibrations. In HoTT, we define

the loop space of a pointed type A, by ΩA = (⋆A≡ ⋆A). This

is again pointed by refl ⋆A, so we may iterate this definition

to get the nth loop space of A, denoted ΩnA. Loop spaces

belong to a particularly important class of types called h-

spaces. These consist of a pointed type B equipped with a

unital magma structure

µ : B×B → B

µl : (b : B)→ µ(⋆B, B)≡ b

µr : (b : B)→ µ(b, ⋆B)≡ b

satisfying µl ⋆B ≡µr ⋆B . Another particularly important h-

space for our purposes is S
1, for which we will use + to

denote its binary operation. S1 also comes equipped with a

notion of inversion which we will denote by −. In fact, S1 is

a commutative and associative h-space.

III. FIRST RESULTS ON HOMOTOPY GROUPS OF SPHERES

In this section, we cover [1, Chap. 2], which introduces

some elementary results on the homotopy groups of spheres.

All of these results can also be found in [2]. Before even

stating them, we need homotopy groups:

Definition 1 (Homotopy groups). For n : N, we define the

nth homotopy group of a pointed type A by:

πn(A) = ‖ S
n →⋆ A ‖0

The name homotopy group should be taken with a grain of

salt: it, in general, only has a group structure when n ≥ 1
(abelian when n ≥ 2). The structure may be defined by

considering the equivalence (Sn →⋆ A) ≃ (Sn−1 →⋆ ΩA),
where the latter type has a multiplication given by pointwise

path composition. An alternative definition of πn(A) is via

loop spaces. There is an equivalence ωn : ΩnA ≃ (Sn →⋆ A)
and, hence, we could equivalently have defined πn(A) by

setting πn(A) = ‖Ω
nA ‖0. This makes the group structure on

πn(A) more transparent: it is simply path composition. This

is the definition used in [2]. Brunerie uses both definitions and

often passes between the two without comment.

An elementary but crucial result for the computation of

homotopy groups is the existence of the long exact sequence

of homotopy groups. Its proof is usually phrased using the

loop space definition of homotopy groups [2, Theorem 8.4.6].

For ease of notation, let us simply write fib f for the fiber of

a pointed function f : A→⋆ B over the basepoint of B.

Proposition 1 (LES of homotopy groups). For any pointed

map f : A→⋆ B, there is a long exact sequence

. . . πn+1(B)

πn(fib f) πn(A) πn(B)

πn−1(fib f) . . .

When analyzing loop spaces and homotopy groups of sus-

pensions, the following function is of great importance. It will

be used in many constructions to come.

Definition 2 (The suspension map). Given a pointed type A,

there is a canonical map σ : A→ Ω (SuspA) given by

σ x = merid x · (merid ⋆A)
−1

This induces a homomorphism on homotopy groups by

post-composition:

πn(A)
σ∗−→ πn(Ω (SuspA))

∼=
−→ πn+1(SuspA)

We will often, with some abuse of notation, simply write

σ∗ for this composition. We also define σn : ‖A ‖n →
Ω ‖SuspA ‖n+1 by

σn|x | = cong | | (σ x)

We will soon see the suspension map in action, but first we

need the following elementary result.

Proposition 2 (Join of spheres). S
n
* S

m ≃ S
n+m+1.

Proof: The statement is easily proved by induction, using

S
n+1 ≃ Susp S

n and (SuspA) *B ≃ Susp (A *B).
In particular, Proposition 2 gives us an equivalence

S
1
* S

1 ≃ S
3. Using this fact, we define the following map,

which will play a crucial role in the analysis of π4(S
3).

Definition 3 (Hopf map). We define hopf : S3 → S
2 by the

composition S
3 ∼
−→ S

1
* S

1 h
−→ S

2 where h is given by

h : S¹ * S¹ → S
2

h (inl x) = north

h (inr y) = north
h (push (x , y) i) = σ (y - x) i

It turns out that the following is true [2, Theorem 8.5.1].

Proposition 3 (The fiber of the Hopf map). The fiber of hopf

is equivalent to S
1, i.e. fib hopf ≃ S

1.

Proposition 3 gives us a fibration sequence S
1 → S

3 →
S
2 which, in particular, will allow us to connect homotopy

groups of S
2 with those of S

3 and S
1. For this, we need to

introduce the notion of connectedness. We say that a type A
is n-connected if ‖A ‖n is contractible. Similarly, we say that

a function f : A→ B is n-connected if all of its fibers are n-

connected. This means, in particular, that the induced function

‖ f ‖n : ‖A ‖n → ‖B ‖n is an equivalence. The following is

an immediate consequence of the definition of n-truncations.

Lemma 1 (Connectedness of spheres). For n ≥ −1, Sn is

(n− 1)-connected.

Using Lemma 1, we can easily prove the following:

Proposition 4 ([1, Prop. 2.4.1]). For n < m, the group

πn(S
m) is trivial.

For the sake of coherence, let us take the liberty of men-

tioning some results from [1, Chap. 3] already here, since they

also concern low-dimensional homotopy groups of spheres. A

crucial result is the following theorem [2, Theorem 8.6.4]:

Theorem 1 (Freudenthal suspension theorem). Given an n-

connected and pointed type A, the map σ : A→ Ω (SuspA)
is 2n-connected.

On can easily deduce from Theorem 1 that, in particular,

σn : ‖A ‖n → ‖Ω (SuspA) ‖n is an equivalence. This allows

us to prove the following result:

Corollary 1. For n ≥ 1, we have πn(S
n) ∼= Z. Furthermore,

πn(S
n) is generated by in = | idSn |.

Proof: The synthetic proof of the classical result that

π1(S
1) ∼= Z is due to Licata and Shulman [18]. The fact

that π2(S
2) ∼= π1(S

1) is given by the LES associated to

the Hopf fibration combined with Proposition 4. The fact

that πn+1(S
n+1) ∼= πn(S

n) is an immediate consequence

of Theorem 1. The second statement follows by induction on

n.

We have now analyzed all homotopy groups πn(S
m) with

n ≤ m. This yields the following:

Proposition 5. Post-composition by hopf induces an isomor-

phism π3(S
3) ∼= π3(S

2).

Proof: By Propositions 1 and 3, we get an exact sequence

π3(S
1)→ π3(S

3)
hopf

∗−−−→ π3(S
2)→ π2(S

1)

as πn(S
1) vanishes for n > 1, hopf∗ is an isomorphism.

Corollary 2. There is an isomorphism ψ : π3(S
2) ∼= Z.

Furthermore, π3(S
2) is generated by hopf.

Proof: By Corollary 1 we know that π3(S
3) is generated

by the identity function on S
3. We know that the isomorphism

π3(S
3) ∼= π3(S

2) is given by post-composition by hopf and

thus the generator of π3(S
3), is mapped to hopf.

A. Formalization of Chapter 2

Most results were already added to agda/cubical by

Mörtberg & Pujet [19], Ljungström [20], and Brunerie,

Ljungström & Mörtberg [12]. The Freudenthal suspension the-

orem was formalized in Cubical Agda by Evan Cavallo [21],

using a direct cubical proof following [2, Thm. 8.6.4].

Corollary 1 was given a direct proof, following the compu-

tation of cohomology groups of spheres in [12].

There were some technical difficulties related to the equiva-

lence ωn : ΩnA ≃ (Sn →⋆ A), which is used to show that the

two different definitions of homotopy groups are equivalent. In

several proofs, it is more natural to work on the left-hand-side

of ωn. At the same time, working on the right-hand-side often

makes constructing elements easier (compare, for instance, an

explicit description of the generator of i3 : π3(S
3) described

as a 3-loop in S
3 to the very compact definition i3 = | idS3 |).

This means that we often have to translate between the two

definitions. One particularly important example is the LES of

homotopy groups associated to a function A→⋆ B. On each

level, the maps are given as follows:

Ωn (fib f)
Ωn

fst
−−−→ ΩnA

Ωn f
−−−→ ΩnB

This is then transported to the definition of homotopy groups

as maps from spheres via ωn. For the proof of e.g. Corollary 2,

we need to know that the maps in the sequence are given as

follows:

πn(fib f)
fst∗−−→ πn(A)

f∗
−→ πn(B)

What we need is then more than just an equivalence ωn :
ΩnA ≃ (Sn →⋆ A) – we need to show that this equivalence is

functorial. This is implicitly assumed in Brunerie’s thesis, but,

in Cubical Agda, we need to make it precise. Formalizing this

fact is not entirely trivial. First, we need a tractable definition

of the equivalence in question. It can be described inductively

with base case ω1 : ΩA→ (S1 →⋆ A) given by:

ω1 p base = ⋆A

ω1 p (loop i) = p i

which we take to be pointed by refl. It is easy to verify that

this is an equivalence. We define ωn+1 by the composition:

Ωn+1A = Ω(ΩnA)
Ωωn−−−−−→ Ω (Sn →⋆ A)

funExt−
⋆−−−−→ (Sn →⋆ ΩA)

−−−−−→ (Sn+1 →⋆ A)

where the last arrow comes from the adjunction Susp ⊣ Ω .

This is a composition of equivalences, and hence an equiva-

lence. We then need to verify that the following commutes

ΩnA (Sn →⋆ A)

ΩnB (Sn →⋆ B)

ωn

Ωnf

ωn

f∗

This can be proved inductively. The base case is easy and the

inductive step is given by the following diagram

Ω (Sn →⋆ A)

Ωn+1A (Sn+1 →⋆ A)

Ωn+1B (Sn+1 →⋆ B)

Ω (Sn →⋆ B)

ωn+1

Ωn+1 f

ωn+1

f∗

≃

Ω f∗

≃
Ωωn

Ωωn

where the commutativity of the outer square comes from the

base case paired with the inductive hypothesis, the triangles

from the definition of ωn+1 and the right-most square from a

straightforward argument.

IV. THE BRUNERIE NUMBER

Here we give an overview of the first half of Brunerie’s

proof. This corresponds to [1, Chap. 3] and culminates in the

isomorphism π4(S
3) ∼= Z/βZ for an at this point unknown

“Brunerie number” β : Z. We also discuss the formalization

of this part of the proof and various simplifications to it found

during the formalization.

A. The James Construction

To define β, Brunerie uses the James construction [22],

which he introduced in HoTT and partially formalized in [23].

Proposition 6 (James construction). For a (k ≥ 0)-connected

pointed type A, there are types JnA with inclusions

J0 A ֒
j0
−→ J1 A ֒

j1
−→ J2 A ֒

j2
−→ · · ·

such that its sequential colimit J∞A ≃ Ω (SuspA). Further-

more, jn : JnA →֒ Jn+1A is (n(k+1)+ (k− 1))-connected.

A consequence of Proposition 6 is the following fact

Proposition 7. Given a (k ≥ 0)-connected type A, there is a

(3k + 1)-connected map J2A −→ Ω (SuspA).

The proof of Proposition 7 uses that J∞A, the sequential

colimit of the sequence in Proposition 6, can be shown to be

equivalent to Ω (SuspA). This, paired with some results on

the connectivity of sequential colimits, gives the statement.

Theorem 2. π4(S
3) ∼= π3(J2 S

2)

Proof: Because S
2 is 1-connected, Proposition 7 tells us

that there is a 4-connected map

J2 S
2 → Ω (Susp S

2) = Ω (S3)

In particular, it is 3-connected and induces an equivalence

‖ J2 S
2 ‖3 ≃ ‖Ω S

3 ‖3. We get:

π4(S
3) ∼= π3(Ω S

3) ∼= π3(J2 S
2)

B. Formalization of the James Construction

This is a particularly technical part of Brunerie’s thesis,

primarily due to the high number of higher coherences which

need to be verified in the proof of Proposition 6. While this

has, subsequent to our efforts, been formalized in its entirety

by Rongji [24], we have taken a shortcut by giving a direct

proof of Theorem 2, which means we do not in fact need the

full James construction. Consequently, we instead give direct

definitions of JnA for n ≤ 2 for a pointed type A.

Definition 4 (Low dimensional James construction). We define

J0A = 1 and J1A = A. The type J2A is defined as the

pushout of the span A×A
i∨

←− A ∨A
∇
−→ A.

We remark that the construction in Definition 4 is not

definitionally the same as Brunerie’s; in his thesis, these

constructions are theorems rather than definitions. Here we

take them as definitions. With JnA defined this way, the

map j0 : J0A → J1A is just the constant pointed map and

j1 : J1A→ J2A is inr.

Before we continue, let us temporarily redefine S
2 to be

the following equivalent HIT. This will make some of the

following constructions more compact.

data S2 : Type where
base : S2

surf : refl base ≡ refl base

The next lemma will be crucial. It is a special case of the

Wedge Connectivity Lemma [2, Lemma 8.6.2], of which we

have formalized a version of the proof of the sphere case

in [12, Lemma 8]. From the point of view of formalization,

this proof is easier to work with since it gives more useful

definitional equalities.

Lemma 2 (Wedge connectivity for S
2). Let P : S2 × S

2 →
2-Type. Any function f : (x : S2×S2) → P x is induced by

the following data:

fl : (x : S2)→ P (x , base)

fr : (y : S2)→ P (base , y)

flr : fl base≡ fr base

Before we discuss the formalization of Theorem 2 stated

with the low dimensional James construction, we first con-

struct the following function. The goal is to define a family

of equivalences fx : ‖ J2 S
2 ‖3 ≃ ‖ J2 S

2 ‖3 over x : S2. We

do this by truncation elimination and pattern matching on x,

starting with the base case:

fbase | inl (x, y) | = | inl (x , y) |

fbase | inr z | = | inl (base , z) |

We omit the path constructors, which are all easy coherences.

It is an easy lemma that fbase is equal to the identity on

‖ J2 S
2 ‖3. To complete the definition of fx, we need to

consider the case when x = surf i j. This amounts to providing

a dependent function:

fsurf : (x : ‖ J2 S
2 ‖3)→ Ω2 (‖ J2 S

2 ‖3 , fbase x)

To do this, we will, in particular, need to provide a family of

fillers Q(x , y) : refl| inl (x , y) |≡ refl| inl (x , y) |. This is a 1-type,

and thus Lemma 2 applies. We define:

Q(base , y) i j = | inl (surf i j , y) |

Q(x , base) i j = | inl (x , surf i j) |

The fact that these two constructions agree when both x and

y are base is a technical but relatively straightforward lemma.

Thereby, Q(x , y) is defined. We may now define fsurf :

fsurf | inl (x , y) | = Q(x , y)

fsurf | inr z | = Q(base , z)

The higher cases are easy due to the fact that the goal becomes

0-truncated, making it sufficient to define them for base : S2.

Thus, fx is defined for all x : S2.

Lemma 3. For x : S2, fx is an automorphism on ‖ J2 S
2 ‖3.

Proof: To make coming proofs easier, this is proved by

explicitly constructing the inverse analogously to fx.

We are now ready to prove the following statement, which

is a rephrasing of Theorem 2.

Proposition 8. Ω ‖S3 ‖4≃‖ J2 S
2 ‖3

Proof: We take S
3 = Susp S

2, where S
2 is defined using

base/surf as above. We employ the encode-decode method

and define Code : ‖ S3 ‖4 → 3-Type. Since the universe

of 3-types is a 4-type, we may do so by truncation elimi-

nation, letting Code | north | = Code | south | = ‖ J2 S
2 ‖3

and Code |merid x i | = ua fx i. We now need to define

a family of functions decodex : Codex → | north | ≡ x
over x : ‖ S3 ‖4. The key step is defining decode| north | :
‖ J2 S

2 ‖3 → Ω ‖S3 ‖4. On point constructors, it is given by:

decode| north | (inl (x , y)) = σ x · σ y

decode| north | (inr z) = σ z

which is easily verified to be coherent with the higher con-

structors. At this point, we may follow the usual encode-

decode heuristic [2, Section 8.9] to prove that decode| north |

is an equivalence in a technical but direct manner.

We get Theorem 2 as an immediate corollary of

Proposition 8 via the same sequence of isomorphisms as in

the proof of Theorem 2.

C. Definition of the Brunerie Number

Brunerie’s goal is now to analyze π3(J2 S
2). The first result

needed is the following:

Definition 5 (Whitehead map). Given two pointed types A
and B, there is a map:

W : A * B → Susp A ∨Susp B

W (inl a) = inr north
W (inr b) = inl north

W (push (a , b) i) =

(cong inr (σ b) · push ⋆1
−¹ · cong inl (σ a)) i

For our purposes, we only need the case when A = B = S
1

(although all of the following results appear in full generality

in Brunerie’s thesis). We get a composite map:

S
3 ≃
−→ S

1
*S

1 W
−→ S

2 ∨S2

This induces, via pre-composition, a Whitehead product:

π2(S
2)×π2(S

2)
[−,−]
−−−→ π3(S

2)

Recall that we denote by i2 the generator of π2(S
2). Brunerie

shows, in particular, the following about its relation to the

Whitehead product.

Theorem 3. The kernel of the suspension map σ∗ : π3(S
2)→

π4(S
3) is generated by [i2, i2].

The key technical component in the proof is the Blakers-

Massey Theorem, first formalized in HoTT by Favonia, Fin-

ster, Licata & Lumsdaine in [25]:

Theorem 4 (Blakers-Massey). Consider the diagram

A

P C

B Pushout f g
inl

inr
f

g

f⊔g

y

y

where P is the pullback along inl and inr, i.e. P =
Σ(b,c):B×C(inl b≡ inr c), and f ⊔ g is defined by

(f ⊔ g) a = (f a , g a , push a)

If f and g are n- respectively m-connected, then f ⊔ g is

(n+m)-connected.

Theorem 3 is proved by considering the following diagram

S
3

P S
2

1 J2S
2

∇◦W

y

y

Verifying that the outer square is a pushout square is technical

and we omit the proof here. Above, P is simply the fiber of

inr : S
2 → J2 S

2. The leftmost map is 2-connected since

S
3 is 2-connected and the top map is 0-connected since S

3

and S
2 are both 1-connected. Consequently, by Theorem 4,

we get that the map S
3 → P is 2-connected and thus induces

a surjection on π3. We get the following diagram:

π3(P) π3(S
2) π3(J2 S

2)

π3(S
3) π4(S

3)

∼=σ∗

where the sequence on the top comes from the long exact

sequence of homotopy groups associated to P . The dashed

map sends the generator i3 : π3(S
3) to [i2, i2] : π3(S

2) by

definition.

Theorem 3 motivates the following definition. Recall that

we denote by ψ the isomorphism π3(S
2) ∼= Z.

Definition 6 (Brunerie number). We define the Brunerie

number β : Z by β = ψ [i2, i2].

We may now state the main result of [1, Chap. 3].

Corollary 3. π4(S
3) ∼= Z/βZ.

Proof: The statement follows immediately from

Theorem 3 and the fact that σ∗ : π3(S
2) → π4(S

3) is

surjective, which is a consequence of Theorem 1.

D. Formalization of the definition of the Brunerie number

The formalization of this part was straightforward. Arguably

the most technical result, the Blakers-Massey theorem, was

already available in the library thanks to Rongji [26]. Most

of the remaining results were essentially just diagram chases

which, in a proof assistant, can be somewhat technical. Most

work went into verifying that J2 S
2 is the cofiber of ∇ ◦W,

the proof of which followed Brunerie’s closely.

In this section we found the only obvious mistake in

Brunerie’s thesis. On page 82, in his definition of the push-

case for W, the path component in the middle was not inverted,

making the term ill-typed. Naturally, this was of no mathemat-

ical significance and something Brunerie immediately would

have noticed if he would have attempted to provide a computer

formalization of this construction.

V. BRUNERIE’S PROOF THAT |β| ≡ 2

This section concerns the final three Chapters (4–6) of

Brunerie’s thesis. The main goal here is proving that |β| ≡ 2.

We will not discuss Chapter 4 in much detail. Chapter 4 is

devoted to smash products and, in particular, their symmetric

monoidal structure. Brunerie used this in subsequent chapters

to define and prove properties about the cup product, a graded

multiplicative operation on cohomology groups which will be

used to show that |β| ≡ 2. This chapter has turned out to be

incredibly difficult to formalize due to the large number of

higher coherences involved in the proofs [11].

Luckily, it turns out that Chapter 4 can be avoided altogether

and that this in fact makes some difficult proofs later on very

direct. For this reason, the results in Chapter 4 were omitted

completely from our formalization. The reason for this is

that all results regarding smash products in Brunerie’s thesis

concern, in some way, pointed maps out of smash products.

In this case, we may exploit the adjunction of maps out of

smash products and bi-pointed maps:

(A ∧B →⋆ C) ≃ (A→⋆ (B →⋆ C))

Here, B →⋆ C is taken to be pointed by the constant map. As

shown in [12], it is arguably easier to define the cup product

on the right-hand side of the adjunction, which effectively

means that we never have to work with smash products when

formalizing cohomology theory.

A. Cohomology and the Hopf Invariant

[1, Chap. 5] introduces integral cohomology groups and

rings, and gives a construction of the Mayer-Vietoris se-

quence. In more detail, Brunerie defines the integral Eilenberg-

MacLane spaces by K0 = Z and Kn = ‖ Sn ‖n for n ≥ 1. This

allows for a definition of the (integral) cohomology of X :

H
n(X) = ‖X → Kn ‖0

The fact that ΩKn+1 ≃ Kn follows by a proof completely

analogous to that of Corollary 1. Brunerie uses this equiva-

lence to carry over the (commutative) h-space structure on

ΩKn+1 to that of Kn. This provides a notion of addition +k :
Kn×Kn → Kn which lifts to Hn(X) by post-composition,

thereby endowing Hn(X) with a group structure.

In this chapter, Brunerie provides a synthetic construction

of the Mayer-Vietoris sequence, i.e. the long exact sequence

H0(D) H0(B)× H0(C) H0(A)

H
1(D) . . .

where D denotes the pushout of a span B
f
←− A

g
−→ C. A

direct application gives us, for n ≥ 1, that Hn(Sm) ∼= Z if

n = m and H
n(Sm) ∼= 1 otherwise. This gives, by another

application of the sequence, the following result:

Lemma 4. For any f : S3 → S
2 we have

H
n(cofib f) ∼=

{

Z n ∈ {0, 2, 4}

1 otherwise

Let us briefly fix f : S3 → S
2. Denote by γ2 and γ4 the

generators of H
2(cofib f) and H

4(cofib f) respectively given

by the image of 1 : Z under the isomorphism in Lemma 4.

These generators may be used to define an invariant on S
3 →

S
2 called the Hopf Invariant. This is done as follows:

Definition 7 (Hopf Invariant). The Hopf Invariant of f is the

unique integer HI f : Z such that γ2 ⌣ γ2≡HI f · γ4.

We remark that the above definition is given for the more

general class of maps S
2n−1 → S

n in Brunerie’s thesis. For

our purposes, the above special case suffices. In particular, we

may see HI as a function π3(S
2) → Z. The following turns

out to be true:

Proposition 9. HI is a homomorphism π3(S
2)→ Z.

Proof: We first rephrase f + g : π3(S
2) as a composition

S
3 −→ S

3 ∨S3
f ∨ g
−−−→ S

2

By analyzing the cohomology of cofib (f ∨ g) and the action

on generators of the obvious maps from cofib (f ∨ g), cofib f
and cofib g into cofib (f + g), one arrives at the result with

some elementary algebra.

Finally, the Hopf invariant of our element of interest [i2, i2]
is computed (up to a sign), using an argument similar to that

of the proof of Proposition 9.

Proposition 10. |HI [i2, i2]| ≡ 2

We are now almost done: if there is an element f : π3(S
2)

such that HI f ≡ 1, then HI is an isomorphism π3(S
2) ∼= Z.

Since isomorphisms of this type are unique up to a sign,

Proposition 10 tells us that also for the standard isomorphism

ψ : π3(S
2) ∼= Z, we must have |ψ[i2, i2]| ≡ 2, i.e. |β| ≡ 2.

Hence, we have so far shown the following:

Lemma 5. If HI f ≡ 1 for some f : π3(S
2), then |β| ≡ 2.

The final chapter of Brunerie’s thesis is devoted to proving

the antecedent of Lemma 5.

B. Formalization of Cohomology and the Hopf Invariant

This section was largely covered by Brunerie, Ljungström

and Mörtberg in [12] and thus also available in

agda/cubical. Hence, what remained to be formalized

in Chapter 5 was the Hopf invariant and Propositions 9

and 10. The formalization of these propositions was

straightforward and we were able to translate Brunerie’s

proofs in a direct manner. This is not surprising as the proofs

are very algebraic.

For simplicity, we only formalized these propositions as

they stand here and not their generalizations to higher spheres

(i.e. as in [1, Prop. 5.4.3 & 5.4.4]). We remark, however,

that the formalized proofs easily should be rephrasable for

the general Hopf invariant of maps S
2n−1 → S

n.

C. The Gysin sequence

This section corresponds to [1, Chap. 6]. In order to be

able to apply Lemma 5, this chapter is devoted to proving

that |HI hopf| ≡ 1, where, recall, hopf : S
3 → S

2 is the

Hopf map—the generator of π3(S
2) from Definition 3. This

amounts to analyzing the cup product on the cohomology of

cofib hopf. It is well-known that cofib hopf gives a model

of the complex projective plane CP 2 (see e.g. [27, Exam-

ple 4.45]), so let us simply write CP 2 from now on. In

order to show that |HI hopf| ≡ 1, it suffices to show that

− ⌣ γ2 : H2(
CP 2

)

→ H4(
CP 2

)

is an isomorphism for

γ2 : H2(
CP 2

)

a generator. Brunerie does this by constructing

the Gysin sequence synthetically.

Proposition 11 (Gysin sequence). Let B be a pointed and

0-connected type and P : B → Type be a fibration with

P ⋆B ≃⋆ S
n−1. Let E = Σb:B(P b) be the total space of P . If

there is a family of maps c : (b : B)→ (Susp (P b)→⋆ Kn)
with c⋆B

a generator of H
n(Sn), then there is an element

en : Hn(B) and a long exact sequence

. . . Hi−1(B)

H
i−1(E) H

i−n(B) H
i(B)

Hi(E) . . .

− ⌣ en

Moreover, c (and also en) exists when B is 1-connected.

In order to make use of this, we need the following result.

Proposition 12. There is a fibration P : CP 2 → Type with

P ⋆
CP 2 ≃⋆ S

1 and total space S
5.

Proposition 12 is a special case of the following result.

Proposition 13 (Iterated Hopf Construction). Given an as-

sociative h-space A, let hA : A*A → SuspA denote the

associated Hopf map. There is a fibration cofibhA → Type
with fiber A and total space A *A *A.

We consider the particular case when A = S
1 in

Proposition 13. In this case, the map hS1 : S
1
*S

1 → S
2

corresponds to the usual Hopf map under the equivalence

S
1
* S

1 ≃ S
3 and hence cofibhS1 ≃ CP 2. The total space of

this is S
1
*S

1
*S

1 which is equivalent to S
5 by Proposition 2

and thus we have proved Proposition 12. The associated Gysin

sequence gives us the main result of this section:

Proposition 14. |HIh| ≡ 1

Proof: Since CP 2 is 1-connected, Proposition 11 com-

bined with Proposition 12 gives us an element e2 : H2(
CP 2

)

and a sequence

H
i−1(

S
5
)

→ H
i−2(

CP 2
) − ⌣ e2−−−−−→ H

i
(

CP 2
)

→ H
i
(

S
5
)

When 1 ≤ i ≤ 4, Hi
(

S
5
)

vanishes. Setting i = 2, we get

that e2 must be a generator of H2(
CP 2

)

, and thus equal to

the generator γ2 : H2(
CP 2

)

up to a sign. Setting i = 4,

we get that − ⌣ e2 must be an isomorphism of groups

H2(
CP 2

)

∼= H4(
CP 2

)

and hence e2 ⌣ e2 is a generator.

Consequently, so is γ2 ⌣ γ2, and thus |HI hopf| ≡ 1.

Proposition 14 combined with Lemma 5 gives the desired

path: |β| ≡ 2. This completes Brunerie’s proof and Corollary 3

gives us the main result:

Theorem 5. π4(S
3) ∼= Z/2Z

D. Formalization of the Gysin Sequence

Formalizing the results from Chapter 6 was more challeng-

ing, but was greatly aided by the alternative construction of

the cup product discussed above. The first technical lemma,

which is crucial for the construction of the Gysin sequence is:

Lemma 6. Given x : Kn and y : Km, we have

cong (λa→ a ⌣k y) (σn x)≡σn+m(x ⌣k y)

In Brunerie’s thesis, this lemma relies on a result which in

turn requires the symmetric monoidal structure of the smash

product (in particular, it uses the pentagon identity). With the

alternative construction of the cup product, however, this result

follows immediately from the definition of the cup product.

Lemma 6 is used to show that the map

gi : Ki → (Sn →⋆ Ki+n)

gi x = λy → x ⌣k ιy

is an equivalence, which is crucially used in the construction

of the Gysin sequence. Above, ι : Sn → Kn is a generator

of H
n(Sn). For reference, gi is the map gi⋆B

in the proof of

[1, Prop. 6.1.2]. While the general idea of Brunerie’s proof of

this statement is correct, it was difficult to formalize directly.

The primary reason for this is that Brunerie does not pay

much attention to the fact that the objects of interest are not

just functions, but pointed functions. Fortunately for us, the

whole proof is very direct with the alternative definition of the

cup product. Formalizing Brunerie’s proof with pointedness of

functions respected would have been hard, especially without

machinery external to [1] (e.g. [12, A.2, Lemma 27]).

After these subtleties were dealt with, the formalization of

the Gysin sequence could proceed following Brunerie’s proof

closely. In our initial formalization, we made a slight adjust-

ment to the indexing of the Gysin sequence. This removed

some bureaucracy but happened at the cost of generality.3 This

made verifying that Proposition 14 slightly less direct, because

we no longer had access to the case

H
1(
S
5
)

→ H
0(
CP 2

) − ⌣ e2−−−−−→ H
2(
CP 2

)

→ H
2(
S
5
)

which is used by Brunerie to show that the element e2 :
H2(

CP 2
)

, for which − ⌣ e2 : H2(
CP 2

)

→ H4(
CP 2

)

is

an isomorphism, is indeed a generator. However, in practice,

this is not a big problem. In fact, it provides a nice example of

a proof by computation. It is very direct to manually show that

the map i : CP 2 → K2 induced by i(inl x) = |x | is equal to

the underlying map of e2. The fact that i generates H2(
CP 2

)

can then be verified by computation: applying the isomorphism

H2(
CP 2

)

∼= Z to | i | returns 1 by normalization in Cubical

Agda. We stress, for those skeptical of this method, that it also

is very direct to provide a “manual” formalization of this fact.

The final step of the formalization was Proposition 13,

i.e. the iterated Hopf construction. Although technical, the

formalization could be carried out following Brunerie closely.

VI. THE SIMPLIFIED NEW PROOF AND NORMALIZATION

OF A BRUNERIE NUMBER

It turns out that not only Chapter 4, but also Chapters 5–

6 can be avoided. As conjectured by Brunerie, it would be

possible to do this by simply normalizing the Brunerie number.

While we still cannot normalize his original definition of it,

Ljungström showed in [13] that we can at least provide a

computation of a substantially simplified Brunerie number.

3A more general form of the Gysin sequence using Brunerie’s indexing has
later been added to agda/cubical.

This is defined via a more tractable description of the isomor-

phism π3(S
2) ∼= Z as a composition of simpler isomorphisms,

relying on an alternative definition of π3 in terms of S
1
*S

1.

The idea is then to trace [i2, i2] : π3(S
2) step by step through

these isomorphisms. This gives a sequence of new Brunerie

numbers and one of these quite surprisingly normalizes to −2
in Cubical Agda in a matter of seconds.

The trick to give a more tractable definition of π3(S
2) ∼= Z

is to redefine the third homotopy group of a type A as

π∗
3(A) = ‖ S

1
*S

1 →⋆ A ‖0. This reformulation of π3 can be

given an explicit group structure, such that pre-composition

by S
1
*S

1 ≃ S
3 induces an isomorphism π3(A) ∼= π∗

3(A). We

briefly outline the proof by first defining the following product:

⌣1 : S¹ → S¹ → S2

base ⌣1 y = north

loop i ⌣1 y = σ y i

In fact, ⌣1 behaves like a “cup product” on S
1:

Proposition 15. For x, y : S1, we have

x ⌣1 y≡− (y ⌣1 x)

x ⌣1 base≡ base

x ⌣1 (x+ y)≡ x ⌣1 y

where − denotes inversion on S
2.

Proof: All three identities are direct by pattern matching

on x and, for the first one, also on y. The first one uses, in the

case where x and y are both loops, an easy lemma which states

for any 2-loop p : Ω2A we have that p−1≡ (λ i j → p j i).
This operation plays an important role in the definition of

the equivalence S
1
*S

1 ≃ S
3.

Proposition 16. The following map is an equivalence:

F : S¹ * S¹ → S3

F (inl x) = north

F (inr y) = north

F (push (x , y) i) = σ (x ⌣1 y) i

We omit the proof which is essentially just technical path-

algebra. The fact that F uses ⌣1, which satisfies the laws in

Proposition 15, lets us analyze π3(S
2) ∼= Z in a more alge-

braic manner. We now redefine π3(S
2) ∼= Z via the following

decomposition, primarily defined in terms of post- and pre-

composition with F and its inverse:

Definition 8. Let θ : π3(S
2) ∼= Z be defined by the following

sequence of isomorphisms

π3(S
2) π∗

3(S
2) π∗

3(S
1
*S

1)

π∗
3(S

3) π3(S
3) Z

F∗ (h∗)
−1

F∗

(F−1)∗ ξ

where h is the map from Definition 3 and the last map can be

chosen to be any reasonable description of the isomorphism

ξ : π3(S
3) ∼= Z sending i3 to 1.

The goal is to trace the image of [i2, i2] : π3(S
2) under

θ. Let us define the following three underlying functions of

elements η1 : π∗
3(S

2), η2 : π∗
3(S

1
*S

1) and η3 : π∗
3(S

3):

η1-fun : S¹ * S¹ → S2

η1-fun (inl x) = north

η1-fun (inr y) = north

η1-fun (push (x , y) i) = (σ y · σ x) i

η2-fun : S¹ * S¹ → S¹ * S¹

η2-fun (inl x) = inr (- x)
η2-fun (inr y) = inr y

η2-fun (push (x , y) i) =

(push (y - x , - x) −¹ · push (y - x , y)) i

η3-fun : S¹ * S¹ → S3

η3-fun (inl x) = north
η3-fun (inr y) = north

η3-fun (push (x , y) i) =

(σ (x ⌣1 y) −¹ · σ (x ⌣1 y) −¹) i

The claim is now that the image of [i2, i2] under the chain of

isomorphisms can be described as follows:

[i2, i2] η1 η2

η3 (−2)i3 ±2

F∗ (h∗)
−1

F∗

(F−1)∗ ξ

Lemma 7. F
∗ [i2, i2] ≃ η1

Proof: The definition of η1 matches that of | ∇ ◦W | :
π∗
3(S

2), and so the statement holds by construction of the

Whitehead product.

Lemma 8. (h∗)
−1 η1≡ η2

Proof: Applying h∗ on both sides gives the equation

η1≡ h∗ η2. The underlying functions of these elements agree

definitionally on inl and inr , and the push -case reduces to a

simple application of the laws described in Proposition 15.

Lemma 9. (F−1)∗ η2≡ η3

Proof: The proof is similar to that of Lemma 8.

Theorem 6. π4(S
3) ∼= Z/2Z

Proof: By uniqueness (up to a sign) of isomorphisms

π3(S
2) ∼= Z, it suffices, according to Corollary 3, to show that

the image of [i2, i2] under θ is ±2. That is:

(ξ ◦ (F−1)∗ ◦ F∗ ◦ (h∗)
−1 ◦ F

∗)[i2, i2]≡±2

By Lemmas 7 to 9, it suffices to show that

(ξ ◦ (F−1)∗) η3≡±2

One can easily show that F−1 η3≡ (−2) i3, and hence we get

(ξ ◦ (F−1)∗) η3≡ (−2) (ξ i3)≡ − 2

In addition to providing a new and much shorter proof of

π4(S
3) ∼= Z/2Z, this gives us a sequence of new Brunerie

numbers, β1, β2, β3 : Z, of decreasing complexity:

β1 = (ξ ◦ (F−1)∗ ◦ F∗ ◦ (h∗)
−1) η1

β2 = (ξ ◦ (F−1)∗ ◦ F∗) η2

β3 = (ξ ◦ (F−1)∗) η3

This gives new hope for Brunerie’s conjecture about a proof

by normalization. This may be captured as follows:

Theorem 7 (New Brunerie numbers). If either of β1, β2, β3 :
Z normalizes to ±2, then π4(S

3) ∼= Z/2Z.

Ideally, we could normalize β1. This, however, turns out to

be difficult, as it does not bypass the main hurdle of computing

the inverse of the isomorphism π∗
3(S

2) ∼= π∗
3(S

1
*S

1) induced

by the Hopf map, which has a rather indirect construction

coming from the LES of homotopy groups associated to the

Hopf fibration. This problem does not apply to β2, for which

the computation does not rely on the problematic inverse.

Unfortunately, also β2 fails to normalize in reasonable time in

Cubical Agda. This is surprising, as the only maps playing a

fundamental role here are two applications of the equivalence

S
1
* S

1 ≃ S
3, which is not too involved, and one application

of ξ which may be compactly described via

π3(S
3)

| |
∗−−→ H

3(
S
3
) ∼=
−→ Z

and computes relatively well if the last isomorphism is con-

structed as in [12].4 We have hence, at the time of writing, not

been able to normalize even β2, despite many optimizations

of the functions involved. We are, however, able to normal-

ize β3 after some minor modifications to η3 and the map

π∗
3(S

3)→ Z. This optimized version of β3, normalizes to −2
in Cubical Agda in just under 4 seconds, thereby giving us an

at least partially computer assisted proof of π4(S
3) ∼= Z/2Z.

We emphasize again that, β2 is a vastly simplified version

of β since the isomorphism π3(S
2) ∼= π3(S

3) never has to

be computed. Hence, it is rather surprising that computations

break down already at this stage. This tells us that Cubical

Agda has a long way to go before any direct computation of

the original β is feasible. We hope that this could be useful

for benchmarking in future optimizations of Cubical Agda.

Finally, we address the elephant in the room: why is there a

minus sign popping up? In other words, have we really chosen

the, in some way, canonical isomorphism? The isomorphism

π3(S
3) ∼= Z maps, as expected, i3 to 1, so it can hardly be the

culprit. Neither can the equivalence F : S1*S
1 ≃ S

3, since it

is applied equally in the constructions of hopf and of [i2, i2].
We could, however, have defined the push-case for h by

h (push (x , y) i) = σ (x - y) i

in which case θ[i2, i2] would have been sent to 2 and hopf to

1 (note that this is only possible since altering h would alter

4As noted in [20], the Freudenthal suspension theorem should be avoided
here as it has a tendency to lead to very slow computations. This is another
way in which we deviate from Brunerie’s β.

the definition of θ). The construction of h that we have given

is, however, precisely the one which fell out by unfolding

our formalization Brunerie’s construction of the corresponding

map. If this indeed is what Brunerie intended, we may also

conclude that the original Brunerie number β is equal to −2.

We stress that this merely is a fun fact and of no mathematical

importance to Brunerie’s proof or our formalization.

VII. CONCLUSION

In this paper, we have presented three formalizations of

π4(S
3) ∼= Z/2Z in the Cubical Agda system. For the differ-

ent proofs that |β| ≡ 2, the line count is roughly as follows:

1) Brunerie’s original proof [∼ 9, 000 LOC]

2) Ljungström’s direct calculation of β [∼ 600 LOC]

3) A computer assisted reformulation of 2) [∼ 400 LOC]

As always, the number of lines of code (LOC) should be

taken with a grain of salt. First, the 9, 000 LOC in the first

formalization exclude over 8, 000 LOC from [26], [21], [12].

Second, these numbers also exclude many elementary results

used in the formalization. We also stress that these line counts

exclude ∼ 9, 000 LOC for Chapters 1-3 which are relevant to

all three proofs.

Formalization 1), which constituted the bulk of this paper,

was a formalization of Brunerie’s pen-and-paper proof, taking

some convenient shortcuts when possible. The problem of

formalizing Brunerie’s proof has been a widely discussed

open problem in HoTT/UF, and we hope that our efforts here

provide a satisfactory solution to it. Formalizations 2) and 3)

were of Ljungström’s simplified calculation of the Brunerie

number, β, as presented in [13]. The very similar proofs 2)

and 3) differ in that 3) uses Cubical Agda to carry out part

of the computation of the new Brunerie number automatically.

Perhaps equally important, we have seen that 3) provides us

with new Brunerie numbers β1, β2 : Z which are far simpler

than the original one, but still do not normalize in a reasonable

amount of time. Our hope is that these can prove useful in

future optimizations of Cubical Agda and related systems, as

they could help shed some light on where the normalization

of the original Brunerie number breaks down.

We remark that proofs 1) and 2) could be done in Book

HoTT and do not use any cubical machinery in a fundamental

way, making them interpretable in any suitably structured

(∞, 1)-topos [4]. We hence claim that, in our formalizations,

we do not crucially rely on computations using univalence

and HITs to prove anything that we could not have proved by

hand in Book HoTT. Nevertheless, the Cubical Agda system

has been very helpful in the formalization, primarily due to

its native support for HITs and definitional computation rules

for higher constructors. Formalization 3), however, is only

valid in a system with computational support for univalence

as it crucially relies on normalization of proof terms involving

univalence. It would be interesting to run this in other cubical

systems, like cubicaltt [28], redtt [29], cooltt [30], etc.

We also remark that our formalization of Brunerie’s proof

does not cover all results of Brunerie’s thesis in full generality.

For instance, we have not developed his proof concerning

Whitehead products in full generality. We leave this gen-

eralization for future work. This would tie in nicely with

another possible direction of future research, namely that of

investigating whether the approach outlined in Section VI can

be used to compute other Whitehead products. In addition,

describing their graded quasi-Lie algebra structure is work in

progress. Another related project is the proof of the symmetric

monoidal structure on smash products, i.e. the main result

of [1, Chap. 4]. While this would not make the proof of

π4(S
3) ∼= Z/2Z easier, it would be interesting to see whether

Brunerie’s proof could actually be formalized, in the way that

he intended it. Naturally, this question is also interesting on its

own right. Also this is ongoing work and some of the biggest

hurdles have recently been overcome.

REFERENCES

[1] G. Brunerie, “On the homotopy groups of spheres in homotopy type
theory,” Ph.D. dissertation, Université Nice Sophia Antipolis, 2016.
[Online]. Available: http://arxiv.org/abs/1606.05916

[2] The Univalent Foundations Program, Homotopy Type Theory: Univalent

Foundations of Mathematics. Institute for Advanced Study: Self-
published, 2013. [Online]. Available: https://homotopytypetheory.org/
book/

[3] V. Voevodsky, “The equivalence axiom and univalent models of
type theory,” February 2010, notes from a talk at Carnegie Mellon
University. [Online]. Available: http://www.math.ias.edu/vladimir/files/
CMU talk.pdf

[4] M. Shulman. (2019, April) All (∞, 1)-toposes have strict univalent
universes. Preprint. [Online]. Available: https://arxiv.org/abs/1904.07004

[5] A. Vezzosi, A. Mörtberg, and A. Abel, “Cubical Agda: A Dependently
Typed Programming Language with Univalence and Higher Inductive
Types,” Journal of Functional Programming, vol. 31, p. e8, 2021.

[6] The Agda Development Team, “The Agda Programming Language,”
2023. [Online]. Available: http://wiki.portal.chalmers.se/agda/pmwiki.
php

[7] C. Cohen, T. Coquand, S. Huber, and A. Mörtberg, “Cubical Type
Theory: A Constructive Interpretation of the Univalence Axiom,” in 21st
International Conference on Types for Proofs and Programs (TYPES

2015), ser. Leibniz International Proceedings in Informatics (LIPIcs),
T. Uustalu, Ed., vol. 69. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2018, pp. 5:1–5:34.

[8] P. L. Lumsdaine and M. Shulman, “Semantics of higher inductive types,”
Mathematical Proceedings of the Cambridge Philosophical Society,
2019.

[9] T. Coquand, S. Huber, and A. Mörtberg, “On Higher Inductive Types in
Cubical Type Theory,” in Proceedings of the 33rd Annual ACM/IEEE

Symposium on Logic in Computer Science, ser. LICS 2018. New York,
NY, USA: ACM, 2018, pp. 255–264.

[10] E. Cavallo and R. Harper, “Higher Inductive Types in Cubical Com-
putational Type Theory,” Proceedings of the ACM on Programming
Languages, vol. 3, no. POPL, pp. 1:1–1:27, January 2019.

[11] G. Brunerie, “Computer-generated proofs for the monoidal structure
of the smash product,” Nov. 2018, Homotopy Type Theory Electronic

Seminar Talks. [Online]. Available: https://www.uwo.ca/math/faculty/
kapulkin/seminars/hottest.html

[12] G. Brunerie, A. Ljungström, and A. Mörtberg, “Synthetic Integral
Cohomology in Cubical Agda,” in 30th EACSL Annual Conference
on Computer Science Logic (CSL 2022), ser. Leibniz International
Proceedings in Informatics (LIPIcs), F. Manea and A. Simpson, Eds.,
vol. 216. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022, pp. 11:1–11:19. [Online]. Available: https://drops.
dagstuhl.de/opus/volltexte/2022/15731

[13] A. Ljungström, “Calculating a brunerie number,” 2022, homotopy Type
Theory Electronic Seminar Talks. [Online]. Available: https://www.
uwo.ca/math/faculty/kapulkin/seminars/hottest.html

[14] P. Martin-Löf, “An Intuitionistic Theory of Types: Predicative Part,” in
Logic Colloquium ’73, ser. Studies in Logic and the Foundations of
Mathematics, H. E. Rose and J. C. Shepherdson, Eds. North-Holland,
1975, vol. 80, pp. 73–118.

[15] ——, Intuitionistic type theory, ser. Studies in Proof Theory. Bibliopo-
lis, 1984, vol. 1.

[16] S. Awodey and M. A. Warren, “Homotopy theoretic models of iden-
tity types,” Mathematical Proceedings of the Cambridge Philosophical

Society, vol. 146, no. 1, pp. 45–55, January 2009.
[17] V. Voevodsky, “Univalent foundations,” September 2010, notes from

a talk in Bonn. [Online]. Available: https://www.math.ias.edu/vladimir/
sites/math.ias.edu.vladimir/files/Bonn talk.pdf

[18] D. R. Licata and M. Shulman, “Calculating the Fundamental Group
of the Circle in Homotopy Type Theory,” in Proceedings of the 2013

28th Annual ACM/IEEE Symposium on Logic in Computer Science, ser.
LICS ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp.
223–232.

[19] A. Mörtberg and L. Pujet, “Cubical Synthetic Homotopy Theory,” in
Proceedings of the 9th ACM SIGPLAN International Conference on

Certified Programs and Proofs, ser. CPP 2020. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 158–171. [Online].
Available: https://doi.org/10.1145/3372885.3373825

[20] A. Ljungström, “Computing Cohomology in Cubical Agda,” Master’s
thesis, Stockholm University, 2020.

[21] E. Cavallo, “Formalization of the Freudenthal Suspension Theorem,”
2020. [Online]. Available: https://github.com/agda/cubical/blob/master/
Cubical/Homotopy/Freudenthal.agda

[22] I. M. James, “Reduced product spaces.” Annals of Mathematics,
vol. 62, no. 1, pp. 170 – 197, 1955. [Online]. Available: https://ezp.sub.
su.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&
db=edsjsr&AN=edsjsr.10.2307.2007107&site=eds-live&scope=site

[23] G. Brunerie, “The james construction and π4(s3) in homotopy type
theory,” CoRR, vol. abs/1710.10307, 2017. [Online]. Available: http://
arxiv.org/abs/1710.10307

[24] K. Rongji, “Formalization of the James Construction,” 2022.
[Online]. Available: https://github.com/agda/cubical/tree/master/Cubical/
HITs/James

[25] K.-B. Hou (Favonia), E. Finster, D. R. Licata, and P. L. Lumsdaine,
“A Mechanization of the Blakers-Massey Connectivity Theorem in
Homotopy Type Theory,” in Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, ser. LICS ’16. New York,
NY, USA: ACM, 2016, pp. 565–574.

[26] K. Rongji, “Formalization of the James Construction,”
2021. [Online]. Available: https://github.com/agda/cubical/blob/master/
Cubical/Homotopy/BlakersMassey.agda

[27] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.
[Online]. Available: https://pi.math.cornell.edu/∼hatcher/AT/AT.pdf

[28] C. Cohen, T. Coquand, S. Huber, and A. Mörtberg, “CUBICALTT:
Cubical Type Theory,” Implementation available at https://github.com/
mortberg/cubicaltt.

[29] RedPRL Development Team, “redtt,” https://www.github.com/
RedPRL/redtt.

[30] ——, “cooltt,” https://www.github.com/RedPRL/cooltt.

http://arxiv.org/abs/1606.05916
https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/
http://www.math.ias.edu/vladimir/files/CMU_talk.pdf
http://www.math.ias.edu/vladimir/files/CMU_talk.pdf
https://arxiv.org/abs/1904.07004
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://drops.dagstuhl.de/opus/volltexte/2022/15731
https://drops.dagstuhl.de/opus/volltexte/2022/15731
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/Bonn_talk.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/Bonn_talk.pdf
https://doi.org/10.1145/3372885.3373825
https://github.com/agda/cubical/blob/master/Cubical/Homotopy/Freudenthal.agda
https://github.com/agda/cubical/blob/master/Cubical/Homotopy/Freudenthal.agda
https://ezp.sub.su.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsjsr&AN=edsjsr.10.2307.2007107&site=eds-live&scope=site
https://ezp.sub.su.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsjsr&AN=edsjsr.10.2307.2007107&site=eds-live&scope=site
https://ezp.sub.su.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsjsr&AN=edsjsr.10.2307.2007107&site=eds-live&scope=site
http://arxiv.org/abs/1710.10307
http://arxiv.org/abs/1710.10307
https://github.com/agda/cubical/tree/master/Cubical/HITs/James
https://github.com/agda/cubical/tree/master/Cubical/HITs/James
https://github.com/agda/cubical/blob/master/Cubical/Homotopy/BlakersMassey.agda
https://github.com/agda/cubical/blob/master/Cubical/Homotopy/BlakersMassey.agda
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://github.com/mortberg/cubicaltt
https://github.com/mortberg/cubicaltt
https://www.github.com/RedPRL/redtt
https://www.github.com/RedPRL/redtt
https://www.github.com/RedPRL/cooltt

	I Introduction
	II Homotopy Type Theory in darkgrayCubical darkgrayAgda
	II-A Elementary HoTT Notions and darkgrayCubical darkgrayAgda Notations
	II-B More Higher Inductive Types
	II-C Truncation levels and n-truncations
	II-D Univalence, loop spaces, and h-spaces

	III First Results on Homotopy Groups of Spheres
	III-A Formalization of Chapter 2

	IV The Brunerie Number
	IV-A The James Construction
	IV-B Formalization of the James Construction
	IV-C Definition of the Brunerie Number
	IV-D Formalization of the definition of the Brunerie number

	V Brunerie's Proof that | =0mu=0mu |=0mu=0mu2
	V-A Cohomology and the Hopf Invariant
	V-B Formalization of Cohomology and the Hopf Invariant
	V-C The Gysin sequence
	V-D Formalization of the Gysin Sequence

	VI The Simplified New Proof and Normalization of a Brunerie Number
	VII Conclusion
	References

