
Symmetric Monoidal Smash Products in HoTT

Axel Ljungström1

Stockholm University, Department of Mathematics
axel.ljungstrom@math.su.se

1 Introduction

In his 2016 proof of π4(S3) ∼= Z/2Z in Homotopy Type Theory (HoTT), Brunerie [Bru16]
crucially uses—but never proves in detail—that the smash product is symmetric monoidal. Due
to the vast amount of path algebra involved when reasoning about smash products, this has
since remained open. While it turns out that smash products are not needed for Brunerie’s
proof [LM23; BLM22], the problem is still interesting in its own right. Several attempts have
been made at salvaging the situation. Floris Van Doorn [Doo18] came very close by considering
an argument using closed monoidal categories but left a gap where the path algebra got too
technical. To be more precise, van Dorn never verified that the equivalence

(A ∧B →? C) ' (A→? (B →? C))

is a pointed natural equivalence. Another line of attack by Cavallo and Harper [CH20; Cav21]
is the addition of parametricity to the type theory which leads to a rather ingenious proof of
the theorem. This, of course, happens at the cost of making the type theory more complicated.
Yet another solution was studied by Brunerie [Bru18] who used Agda meta-programming to
generate the relevant proofs. Possible philosophical objections to such a solution aside, Brunerie’s
generated proof of the pentagon identity failed to type-check due to its eating up too much
memory.

In this paper, we provide another solution. We introduce a heuristic for reasoning about
functions defined over iterated smash products which vastly reduces the complexity of identity
proofs. We use this to give a complete proof of the fact that the smash product is symmetric
monoidal. While all key results have been formalised in Cubical Agda, we present them here in
Book HoTT.

2 Background

Let us briefly introduce the key concepts of this paper: symmetric monoidal (wild) categories
and smash products. We assume familiarity with HoTT and refer to the HoTT Book [UF13] for
the basic constructions and definitions used here.

2.1 Symmetric monoidal wild categories

To make the statements in this paper somewhat more compact, we will use wild categories.
These are defined to be just like categories but without any h-level assumptions [CK17].

Definition 1 (Wild categories). A wild category is a category with a type of objects and types
of morphisms.



Symmetric Monoidal Smash Products in HoTT Axel Ljungström

The difference between a wild category and a category is that in the latter we ask for sets
of objects and morphisms. While the definition of wild categories, in general, is much less
well-behaved, it is general enough to capture what we will need in this paper. Here, the wild
category of interest is that of pointed types.

Proposition 1. Let Type? denote the universe of pointed types (at some universe level). This
universe forms a wild category with Type?[A,B] := (A →? B), i.e. with pointed functions as
morphisms.

The main goal of this paper is to show that Type? is not only a wild category but a symmetric
monoidal wild category, so let us define this.

Definition 2 (Monoidal wild categories). A monoidal wild category is a wild category M
equipped with

• a functor ⊗ : M ×M →M

• a unit, i.e. an element I : M equipped with natural isomorphisms λA : I ⊗ A ∼= A and
ρA : A⊗ I ∼= A

• a family of isomorphisms αA,B,C : ((A⊗B)⊗C) ∼= (A⊗ (B⊗C)) natural in all arguments
such that

– the triangle indentity holds, i.e. the following diagram commutes

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

ρA⊗1B 1A⊗λB

– the pentagon indentity holds, i.e. the following diagram commutes

((A⊗B)⊗ C)⊗D

(A⊗ (B ⊗ C))⊗D (A⊗B)⊗ (C ⊗D)

A⊗ ((B ⊗ C)⊗D) A⊗ (B ⊗ (C ⊗D))

αA,B,C⊗1D

αA,B⊗C,D

αA⊗B,C,D

αA,B,C⊗D

1A⊗αB,C,D

Definition 3 (Symmetric monoidal wild categories). A symmetric monoidal wild category is a
monoidal wild category equipped with a family of isomorphisms βA,B : A⊗B ∼= B ⊗A, natural
in both arguments, such that

• βB,A ◦ βA,B = 1A⊗B

• The hexagon identity holds, i.e. the following diagram commutes

(A⊗B)⊗ C (B ⊗A)⊗ C

A⊗ (B ⊗ C) B ⊗ (A⊗ C)

(B ⊗ C)⊗A B ⊗ (C ⊗A)

βA,B⊗1C

αA,B,C

βA,B⊗C

αB,C,A

αB,A,C

1B⊗βA,C

2



Symmetric Monoidal Smash Products in HoTT Axel Ljungström

2.2 Smash Products

The model of the smash product we will use here is given by the cofibre of the inclusion
A ∨B ↪→ A ∧B, i.e. the following pushout

A ∨B A×B

1 A ∧B

y

For the sake of clarity, let us spell this out in detail:

Definition 4. The smash product of two pointed types A and B, is the HIT generated by

• a point ?∧ : A ∧B

• for every pair (a, b) : A×B,
a point 〈a, b〉 : A ∧B

• for every point a : A, a path pushl(a) : 〈a, ?B〉 = ?∧

• for every point b : B, a path pushr(b) : 〈?a, b〉 = ?∧

• a coherence pushlr : pushl(?A) = pushr(?B).

We always take A ∧B to be pointed by ?∧.

We remark we could equivalently have defined the smash product by the pushout

A+B A×B

1 + 1 A ∧B
y

This definition has the advantage of not having any 2-dimensional path constructors but has the
disadvantage of having additional an additional point constructor. It turns out that Definition 4
suits our purposes better, so we will stick with it.

Let us also verify that the smash product is functorial. In what follows, a pointed function
A→? B is a function f : A→ B equipped with a proof of pointedness ?f : f(?A) = ?B .

Definition 5. For two pointed functions f : A→? C and g : B →? D, there is an induced map
f ∧ g : A ∧B →? C ∧D defined by

(f ∧ g) (?∧) = ?∧

(f ∧ g) 〈a, b〉 = 〈f(a), g(a)〉
apf∧g(pushl(a)) = ap〈f(a),−〉(?g) · pushl(f(a))

apf∧g(pushr(b)) = ap〈−,g(b)〉(?f ) · pushr(g(b))

apapf∧g
(pushlr) = . . .

where the omitted case is a simple coherence which will not matter for any future constructions
or proofs. We take this map to be pointed by refl.

We also take the opportunity to mention the commutativity of smash products. This is
trivial since the definition of A ∧B is entirely symmetric in both arguments.

Proposition 2. The swap map A×B → B ×A induces a pointed equivalence A∧B '? B ∧A.

3



Symmetric Monoidal Smash Products in HoTT Axel Ljungström

3 Associativity

Proving that the smash product is associative far less straightforward than proving its com-
mutativity. In fact, even the seemingly direct task of constructing the associator map is no
mean feat. While this has already been verified by van Dorn [Doo18] and, using a computer
generated proof, by Brunerie [Bru18], let us give a direct construction of the equivalence. We do
this because we will need it to be as easy to trace as possible when verifying e.g. the pentagon
identity. For this purpose, we will introduce a new HIT capturing triple smash products in a
way which is neutral with respect to the distribution of parentheses.

Definition 6. Given pointed types A,B,C, we define the type
∧

(A,B,C) as the HIT given by:

• a point ?3∧

• for each triple of points (a, b, c) : A×B × C, a point 〈a, b, c〉 :
∧

(A,B,C)

• for b : B and c : C, a path push0(b, c) : 〈?A, b, c〉 = ?3∧

• for a : A and c : C, a path push1(a, c) : 〈a, ?B , c〉 = ?3∧

• for a : A and b : B, a path push2(a, b) : 〈a, b, ?C〉 = ?3∧

• for a : A, path push1,2(a) : push1(a, ?C) = push2(a, ?B)

• for b : B, path push0,2(b) : push0(b, ?C) = push2(?A, b)

• for c : C, path push0,1(c) : push0(?A, c) = push1(?A, c)

• a coherence push0,1,2 filling

push0(?B , ?C) push2(?A, ?B)

push1(?A, ?C)

push0,2(?B)

push0,1(?C) push1,2(?A)

Let us verify that this actually captures a triple smash product. What we need is an
equivalence (A∧B)∧C '

∧
(A,B,C). The equivalence is described in Table 1 with constructors

of (A ∧B) ∧ C on the left and the corresponding constructors of
∧

(A,B,C) on the right. We
remark that this correspondence is only serves as an informal sketch of the equivalence—in
practice, some simple coherences are needed for the higher constructors to make it well-typed.
Verifying that this map indeed defines an equivalence is somewhat laborious but direct. We get
the associativity of the smash product as a consequence.

Proposition 3. There is a pointed equivalence αA,B,C : (A ∧B) ∧ C '? A ∧ (B ∧ C)

Proof. We use the
∧

(A,B,C) HIT to construct the equivalence and the fact that it is trivially
invariant under permutation of the arguments in the sense that e.g.

∧
(A,B,C) '

∧
(C,A,B).

We define αA,B,C by the composite:

(A ∧B) ∧ C '
∧

(A,B,C) '
∧

(C,B,A) ' (C ∧B) ∧A ' A ∧ (B ∧ C)

The fact that αA,B,C is pointed holds by refl.

4



Symmetric Monoidal Smash Products in HoTT Axel Ljungström

(A ∧B) ∧ C →
∧

(A,B,C)
?∧ | ?3∧
〈?∧, c〉 | ?3∧
〈〈a, b〉, c〉 | 〈a, b, c〉

ap〈−,c〉(pushl(a)) | push1(a, c)

ap〈−,c〉(pushr(b)) | push0(b, c)

apap〈−,c〉
(pushlr) | push0,1(c)

pushl(?∧) | refl
pushl〈a, b〉 | push2(a, b)

appushl
(pushl(a)) | push1,2(a)

appushl
(pushr(b)) | push0,2(b)

apappushl
(pushlr) | push0,1,2

pushr(c) | refl
pushlr

| refl

Table 1: (A ∧B) ∧ C vs.
∧

(A,B,C)

4 The Heuristic

Reasoning about functions defined over iterated smash products quickly gets out of hand. For
instance, when verifying the pentagon axiom, we need to reason about functions on the form
((A ∧B) ∧ C) ∧D → E. To prove an equality of such functions f and g, we have to construct,
for instance, a dependent path

apapapf◦pushl
◦pushl

(pushl(a)) // apapapg◦pushl
◦pushl

(pushl(a)) (1)

which boils down to filling a 4-dimensional cube with highly non-trivial sides. This is often
completely unmanageable in practice. The best thing we can hope for is that these types of
coherence problems are, in some sense, automatic. This was, in fact, suggested in [Bru16], but
never proved or in any way made formal. In this section, we will see that this, in fact, is the
case.

The first troublesome part of verifying equalities of functions defined over smash products is
the pushlr constructor. Fortunately, we do not have to deal with it. Let us denote by A ∧̃B the
smash product A ∧B minus the pushlr constructor, i.e. the pushout

A+B A×B

1 A ∧̃B

y

and let i be the inclusion A ∧̃B ↪→ A ∧B.

Lemma 1. For any two maps f, g : A ∧B → C satisfying f ◦ i = g ◦ i, we have that f = g.

Proof. The antecedent of the statement provides us with the following data:

• a path p : f(?∧) = g(?∧)

• a homotopy h : ((a, b) : A×B)→ f〈a, b〉 = g〈a, b〉

5



Symmetric Monoidal Smash Products in HoTT Axel Ljungström

• for each a : A, a filler hl(a) of the square

g〈a, ?B〉 g(?∧)

f〈a, ?B〉 f(?∧)

h(a,?B)

apg(pushl(a))

p

apf (pushl(a))

• for each b : B, a filler hr(b) of the square

g〈?A, b〉 g(?∧)

f〈?A, b〉 f(?∧)

h(?A,b)

apg(pushr(b))

p

apf (pushr(b))

To prove that f = g, we need to provide a p′, h′, h′l, h
′
r of the same types as above, as well as a

filler h′lr of the cube

g〈?A, ?B〉 g(?∧)

g〈?A, ?B〉 g(?∧)

f〈?A, ?B〉 f(?∧)

f〈?A, ?B〉 f(?∧)apf (pushl(?A))

apf (pushr(?A))

apg(pushr(?A))

apg(pushl(?A))

where the top and bottom squares are given respectively by apapg
(pushlr) and apapf

(pushlr), the

left-and right hand side respectively by reflh′(?A,?B) and reflp′ and the front and back respectively
by h′l(?A) and h′r(?B).

We set p′ = p, h′ = h and h′l = hl. For h′r, however, we need to make an alteration. We
construct it as the following composite square

g〈?A, b〉 g(?∧) g(?∧)

f〈?A, b〉 f(?∧) f(?∧)

h(?A,b)

apg(pushr(b))

p

apf (pushr(b))

p

6



Symmetric Monoidal Smash Products in HoTT Axel Ljungström

where the square on the left is hr(b) and the square on the right is the lid of the following cube

g(?∧) g(?∧)

f(?∧) f(?∧)

g〈?A, ?B〉 g〈?A, ?B〉

f〈?A, ?B〉 f〈?A, ?B〉

h(?A,?B)

apg(pushl(?A)) apg(pushr(?B))
p p

apf (pushl(?A)) apf (pushr(?B))

h(?A,?B)

whose sides are given by hl(?A) and hr(?B) on the left and right respectively, the action of f
and g on pushlr on the front and back respectively and reflh(?A,?B) on the bottom. One can now
easily construct the filler h′lr by generalising the cubes involved and applying path induction.

This lemma is very useful but does not get us all the way. Complicated paths like in (1) still
need to be constructed, regardless of what happens with the pushlr constructor. To strengthen
the principle, we will need to introduce homogeneous types.

Definition 7. A pointed type A is homogeneous if for any a : A there is a pointed equivalence
(A, ?A) '? (A, a).

The usefulness of homogeneous types is showcased in the following lemma which was first
conjectured for Eilenberg-MacLane spaces in work leading up to [BLM22] and later proved and
generalised Cavallo (and later further generalised by Buchholtz, Christensen, G. Taxer̊as Flaten
and Rijke [Buc+23]).

Lemma 2. Let f, g : A→? B with B homogeneous. If f = g as plain functions, then f = g as
pointed functions.

The same lemma holds for bi-pointed functions f, g : A →? (B →? C), since the type
(B →? C) is homogeneous if C is. This gives a corresponding principle for maps defined over
smash products via the adjunction

(A ∧B →? C) ' (A→? (B →? C))

Lemma 3. Let f, g : A ∧ B →? C with C homogeneous. If f〈a, b〉 = g〈a, b〉 for all a : A and
b : B, we get an equality of pointed functions f = g.

If we could apply Lemma 3 when proving the pentagon identity, we would be done immediately.
Unfortunately, none of the types showing up in the pentagon is homogeneous. There is, however,
some use for it. Let us first make the following observation: given two pointed functions
f, g : A ∧ B →? C and a homotopy h : ((a, b) : A × B) → f〈a, b〉 = g〈a, b〉, we can define two
functions Lh : A→ ΩC and Rh : B → ΩC in terms of h (and suitable coherences). The obvious
definition of these maps will give us a version of Lemma 1 which tells us that if Lh and Rh
are constant, then f = g as plain functions and, furthermore, that if Lh or Rh is pointed, then
f = g as pointed functions. We can weaken this by requiring that Lh and Rh both are equal,
as pointed functions, to the constant functions sending any point to refl. If either A or B is
another smash product, this would be a situation where Lemma 3 applies since ΩC (and indeed
any path type) is homogeneous.

Let us spell this out. In fact, we can state this idea without any pointedness assumptions.

7



Symmetric Monoidal Smash Products in HoTT Axel Ljungström

Definition 8. Let f, g : A∧B → C and let h : ((a, b) : A×B)→ f〈a, b〉 = g〈a, b〉. This induces,
in particular, functions Lh : A→? f(?∧) = g(?∧) and Rh : B →? f(?∧) = g(?∧) defined by

Lh(a) = (apf (pushl(a)))−1 · h(a, ?B) · apg(pushl(b))

Rh(b) = (apf (pushr(b)))
−1 · h(?A, b) · apg(pushr(b))

where we may simply take f(?∧) = g(?∧) to be pointed by either Lh(?A) or Rh(?A) (these are
equal by pushlr, so the choice does not matter).

We may use Lh and Rh to give a compact induction principle for identities f = g. The
following lemma is a direct weakening of Lemma 1 along the lines of the previous discussion.

Lemma 4. Let f, g : A ∧B → C. The following data gives an equality f = g:

• A homotopy h : ((a, b) : A×B)→ f〈a, b〉 = g〈a, b〉

• Equalities of pointed functions Lh = constLh(?B) and Rh = constRr(?B).

• (Optional, if an equality of pointed functions is desired): A coherence ?f = Lh(?B) · ?g

Let us stress the key idea again, since one very reasonably may ask why Lemma 4 is useful
in any way—asking for an equality of pointed functions in the second datum when, in fact, only
an equality of regular functions is needed seems unnecessary—even if the codomains of Lh and
Rh are homogeneous and pointed equality is logically equivalent to regular equality by Lemma 2.
There is, however, a point to pointedness here. When either A or B (or both) is another smash
product, the fact that Lh and Rh have homogeneous codomain means that Lemma 3 applies.
Let us exemplify this:

Lemma 5. For any two functions f, g : (A ∧B) ∧ C → D, the following data gives an equality
f = g:

(i) A homotopy h : ((a, b, c) : A×B × C)→ f〈a, b, c〉 = g〈a, b, c〉.

(ii) For every pair (a, b) : A×B, a filler of the square

f〈?A, ?B , ?C〉 g〈?A, ?B , ?C〉

f〈?∧, ?C〉 g〈?∧, ?C〉

f(?∧) g(?∧)

f〈a, b, ?C〉 g〈a, b, ?C〉

apf (pushl〈a,b〉)

apf (pushl(?∧)
−1)

apf〈−,?C〉
(pushr(?B)−1))

h(?A,?B ,?C)

apg〈−,?C〉
(pushr(?B)−1))

apg(pushl(?∧)
−1)

h(a,b,?C)

apg(pushl〈a,b〉)

8



Symmetric Monoidal Smash Products in HoTT Axel Ljungström

(iii) For every point c : C, a filler of the square

f〈?A, ?B , ?C〉 g〈?A, ?B , ?C〉

f〈?∧, ?C〉 g〈?∧, ?C〉

f(?∧) g(?∧)

f〈?∧, c〉 g〈?∧, c〉

f〈?A, ?B , c〉 g〈?A, ?B , c〉
h(?A,?B ,c)

apf〈−,c〉(pushr(?B)) apg〈−,c〉(pushr(?B))

apf (pushr(c)) apg(pushr(c))

h(?A,?B ,?C)

apf (pushl(?∧))
−1

apf〈−,?C〉
(pushr(?B))−1

apg(pushl(?∧))
−1

apg〈−,?C〉
(pushr(?B))−1

(iv) For every pair (a, c) : A× C, a filler of the square

f〈?A, ?B , c〉 g〈?A, ?B , c〉

f〈?∧, c〉 g〈?∧, c〉

f〈a, ?B , c〉 g〈a, ?B , c〉
h(a,?B ,c)

apf〈−,c〉(pushl(a)) apg〈−,c〉(pushl(a))

apf〈−,c〉(pushl(?A))−1

h(?A,?B ,c)

apg〈−,c〉(pushl(?A))−1

(v) For every pair (b, c) : B × C, a filler of the square

f〈?A, ?B , c〉 g〈?A, ?B , c〉

f〈?∧, c〉 g〈?∧, c〉

f〈?A, b, c〉 g〈?A, b, c〉
h(?A,b,c)

apf〈−,c〉(pushr(b)) apg〈−,c〉(pushr(b))

apf〈−,c〉(pushr(?B))−1 apg〈−,c〉(pushr(?B))−1

h(?A,?B ,c)

Proof. Suppose we have the given data. We apply Lemma 4 to f and g. This breaks the proof
up in 2 subgoals:

• First, we need to provide a homotopy k : ((x, c) : (A ∧ B) × C) → f〈x, c〉 = g〈x, c〉. To
construct k, we may apply Lemma 4 (or, equivalently in this case since we only have one
copy of the smash product in the domain, Lemma 1). This gives us 2 new subgoals.

– First, we need a homotopy ((a, b, c) : A × B × C) → f〈a, b, c〉 = g〈a, b, c〉. This is
given by h.

– We need to show that Lh(−,c) and Rh(−,c) are constant. Since their codomains are
homogeneous, it provides to prove the equality for underlying functions. This boils
down to providing fillers of the squares which we assumed in (iv) and (v).

9



Symmetric Monoidal Smash Products in HoTT Axel Ljungström

• We then need to show that Lk and Rk are constant. To show that Lk is constant, we apply
Lemma 3 using that its codomain is homogeneous. Hence, we only need to verify that
Lk〈a, b〉 = Lk(?∧). Unfolding the definitions, we see that this is given to by assumption (ii).
Note that this is where the explosion of complexity would normally happen but, thanks
to Lemma 3, we completely avoid having to verify any higher coherences. For Rk, it
suffices by Lemma 2 to show that its underlying function is constant. Again, unfolding
the definitions, we see that this is given by (iii).

For completeness, let us state the corresponding lemma for functions f, g : ((A∧B)∧C)∧D)→
E. The proof is by Lemma 4 and Lemma 5, following the exact same line of attack as the proof
of Lemma 5. We stress that it is not important to read the statement in detail since it is rather
technical—we mainly include it to showcase the fact that only squares are involved as opposed
to the (many) high-dimensional cubes of coherences which would appear in a näıve inductive
proof.

Lemma 6. For any two functions f, g : ((A ∧B) ∧ C) ∧D)→ E, the following data gives an
equality f = g:

(i) A homotopy h : ((a, b, c, d) : A×B × C ×D)→ f〈a, b, c, d〉 = g〈a, b, c, d〉.

(ii) For every triple (a, b, d) : A×B ×D, a filler of the square

f〈?A, ?B , ?C , d〉 g〈?A, ?B , ?C , d〉

f〈?∧, ?C , d〉 g〈?∧, ?C , d〉

f〈?∧, d〉 g〈?∧, d〉

f〈a, b, ?C , d〉 g〈a, b, ?C , d〉

apf〈−,d〉(pushl〈a,b〉)

apf〈−,d〉(pushl(?∧)
−1)

apf〈−,?C,d〉(pushr(?B)−1))

h(?A,?B ,?C)

apg〈−,?C,d〉(pushr(?B)−1))

apg〈−,d〉(pushl(?∧)
−1)

h(a,b,?C)

apg〈−,d〉(pushl〈a,b〉)

(iii) For every pair (c, d) : C ×D, a filler of the square

f〈?A, ?B , ?C , d〉 g〈?A, ?B , ?C〉

f〈?∧, ?C , d〉 g〈?∧, ?C〉

f〈?∧, d〉 g〈?∧, d〉

f〈?∧, c, d〉 g〈?∧, c, d〉

f〈?A, ?B , c, d〉 g〈?A, ?B , c, d〉
h(?A,?B ,c,d)

apf〈−,c,d〉(pushr(?B)) apg〈−,c,d〉(pushr(?B))

apf〈−,d〉(pushr(c)) apg〈−,d〉(pushr(c))

h(?A,?B ,?C ,d)

apf〈−,d〉(pushl(?∧))
−1

apf〈−,?C,d〉(pushr(?B))−1

apg〈−,d〉(pushl(?∧))
−1

apg〈−,?C,d〉(pushr(?B))−1

10



Symmetric Monoidal Smash Products in HoTT Axel Ljungström

(iv) For every triple (a, c, d) : A× C ×D, a filler of the square

f〈?A, ?B , c, d〉 g〈?A, ?B , c, d〉

f〈?∧, c, d〉 g〈?∧, c, d〉

f〈a, ?B , c, d〉 g〈a, ?B , c, d〉
h(a,?B ,c,d)

apf〈−,c,d〉(pushl(a)) apg〈−,c,d〉(pushl(a))

apf〈−,c,d〉(pushl(?A))−1

h(?A,?B ,c,d)

apg〈−,c,d〉(pushl(?A))−1

(v) For every triple (b, c, d) : B × C ×D, a filler of the square

f〈?A, ?B , c, d〉 g〈?A, ?B , c, d〉

f〈?∧, c, d〉 g〈?∧, c, d〉

f〈?A, b, c, d〉 g〈?A, b, c, d〉
h(?A,b,c,d)

apf〈−,c,d〉(pushr(b)) apg〈−,c,d〉(pushr(b))

apf〈−,c,d〉(pushr(?B))−1 apg〈−,c,d〉(pushr(?B))−1

h(?A,?B ,c,d)

(vi) For every triple (a, b, c) : A×B × C, a filler of the square

f〈?A, ?B , ?C?D〉 g〈?A, ?B , ?C?D〉

f〈?∧, ?C , ?D〉 g〈?∧, ?C , ?D〉

f〈?∧, ?D〉 g〈?∧, ?D〉

f(?∧) g(?∧)

f〈a, b, c, ?D〉 g〈a, b, c, ?D〉
h(a,b,c,?D)

apf (pushl〈a,b,c〉) apg(pushl〈a,b,c〉)

apg(pushl(?∧)))
−1apf (pushl(?∧)))

−1

apf〈−,?D〉
(pushl(?∧)))

−1

apf〈−,?C,?D〉
(pushl(?A)))−1

h(?A,?B ,?C?D)

apg〈−,?D〉
(pushl(?∧)))

−1

apg〈−,?C,?D〉
(pushl(?A)))−1

11



Symmetric Monoidal Smash Products in HoTT Axel Ljungström

(vii) For every d : D, a filler of the square

f〈?A, ?B , ?C , ?D〉 g〈?A, ?B , ?C , ?D〉

f〈?∧, ?C , ?D〉 g〈?∧, ?C , ?D〉

f〈?∧, ?D〉 g〈?∧, ?D〉

f(?∧) g(?∧)

f〈?∧, d〉 g〈?∧, d〉

f〈?∧, ?C , d〉 g〈?∧, ?C , d〉

f〈?A, ?B , ?C , d〉 g〈?A, ?B , ?C , d〉
h(?A,?B ,?C ,d)

apf〈−,?C,d〉(pushl(?A))) apg〈−,?C,d〉(pushl(?A)))

apf〈−,d〉(pushl(?∧)))

apf (pushr(d))

apf (pushl(?∧)))
−1

apf〈−,?D〉
(pushl(?∧)))

−1

apf〈−,?C,?D〉
(pushl(?A)))−1

h(?A,?B ,?C ,?D)

apg〈−,d〉(pushl(?∧)))

apg(pushr(d))

apg(pushl(?∧)))
−1

apg〈−,?C,?D〉
(pushl(?A)))−1

apg〈−,?D〉
(pushl(?∧)))

−1

Let us make three observations about Lemma 5 and Lemma 6.

1. In both statements, the different pieces of data are almost completely mutually independent.
The only choice we make that matters is the choice of homotopy h. This means that we
are free to provide any proofs we like for the remaining steps without having to worry
about future coherences.

2. In many cases (especially those relating to the symmetric monoidal structure of the smash
product) the homotopy h will be defined by h(a1, . . . , an) = refl. This means that all other
data we need to provide are equalities of composite paths. In addition, all paths involved
are defined in terms of applications of f and g on path constructors which we can usually
simply unfold to something (hopefully) simple.

3. Going from Lemma 5 to Lemma 6, we see that only two additional assumptions are needed.
If we would to increase the number of copies of smash products appearing in the domain by
one, we would only need to provide two additional squares (and still no higher coherences).
Hence, the complexity of such proofs grows linearly with the complexity of the domain.
For comparison, if we were to resort to a näıve proof by deep smash product induction,
the amount of data needed would grow exponentially.

While it is rather difficult to provide a generalisation of Lemma 5 and Lemma 6 for arbitrarily
large iterations of the smash product in a way that both informative and is useful in practice,
we can at least state the general idea as an informal heuristic:

Heuristic. To show that two functions f, g :
∧
i≤n

Ai → B are equal, it suffices, by iterative appli-

cation Lemmas 2 to 4, to provide a family of paths h(x1, . . . , xn) : f〈x1, . . . , xn〉 = g〈x1, . . . , xn〉
for xi : Ai and to show that this is coherent with f and g on any single application of pushl or

12



Symmetric Monoidal Smash Products in HoTT Axel Ljungström

pushr (e.g. ap〈−,xi+1,...,xn〉(pushl〈x1, . . . , xi−1〉). Furthermore, if an equality of pointed functions
is required, we need to provide a filler of the following square:

f〈?A1
, . . . , ?An

〉 g〈?A1
, . . . , ?An

〉

...
...

f〈?∧, ?An〉 g〈?∧, ?An〉

f(?∧) ?B g(?∧)

apf (pushr(?A)) apg(pushr(?A))

h(?A1
,...,?An )

?f ?−1
g

5 The Symmetric Monoidal Structure

Let us reap the fruits of our labour and show that ∧ defines a symmetric monoidal product
on the universe of pointed types. We will not verify all axioms here, since this is neither very
instructive nor very interesting. Instead, we sketch the proofs of the most technical properties.

Proposition 4. The smash product satisfies the hexagon axiom, i.e. we have an equality of
pointed functions H0 = H1 where H0 and H1 are defined as the composites of each side of the
pentagon:

(A ∧B) ∧ C (B ∧A) ∧ C

A ∧ (B ∧ C) B ∧ (A ∧ C)

(B ∧ C) ∧A B ∧ (C ∧A)

αA,B,C

βA,B∧1C

αB,A,C

βA,B∧C

αB,C,A

1B∧βA,C

H0

H1

Proof. We show the statement by an application of our heuristic which, in this case, takes the
form of Lemma 5. We provide the data as follows:

1. For the homotopy h(a, b, c) : H0〈a, b, c〉 = H1〈a, b, c〉 we simple choose h(a, b, c) = refl,
since both sides compute to 〈b, c, a〉.

13



Symmetric Monoidal Smash Products in HoTT Axel Ljungström

2. The second datum in Lemma 5 computes to1 the following square filling problem:

〈?B , ?C , ?A〉 〈?B , ?C , ?A〉

∧C ∧C

∧C ∧C

〈b, ?C , a〉 〈b, ?C , a〉

ap〈b,−〉(pushr(a))·pushl(b)

refl

refl

ap〈b,−〉(pushr(a))·pushl(b)

refl

pushl(?B)−1·ap〈?B,−〉(pushl(?C))−1 pushl(?B)−1·ap〈?B,−〉(pushl(?C))−1

refl

which of is solved by refl.

3. The remaining squares are computed and solved in an identical manner.

4. For the pointedness, we need to fill the square outlined in end of the statement of
the heuristic. This is equally direct since ?H0

= ?H1
= refl, which holds because all

functions involved in the definitions of H0 and H1 are pointed by refl.

Proposition 5. The pentagon identity holds for the smash product, i.e. we have an equality of
pointed functions P0 = P1 where P0 and P1 are defined as the composites of each side of the
pentagon:

((A ∧B) ∧ C) ∧D

(A ∧ (B ∧ C)) ∧D (A ∧B) ∧ (C ∧D)

A ∧ ((B ∧ C) ∧D) A ∧ (B ∧ (C ∧D))

αA,B,C∧1D

αA,B∧C,D

αA∧B,C,D

αA,B,C∧D

1A∧αB,C,D

P0

P1

Proof. The statement follows easily by the heuristic, which in this case corresponds to Lemma 6.
The proof is identical to the proof of Proposition 4 and follows simply by evaluating P0 and
P1 on the 1-dimensional path constructors involved and noting that all square-filling problems
listed in Lemma 6 become trivial.

All other axioms defining a symmetric monoidal wild categories follow in the same direct
manner and we, after some rather mechanical labour, easily arrive at the main result.

Theorem 1. The universe of pointed types forms a symmetric monoidal wild category with the
smash product as tensor product.

1By ‘computes to’ we do not mean ‘normalises in Agda to’. We mean ‘compute’ in the manual sense, i.e. by
tracing H0 and H1 on the point and path constructors involved. Direct normalisation in Agda produces rather
large and unmanageable terms. However, using Agda to normalise the terms in a more controlled manner (i.e.
step-by-step) is very useful, as a sanity check, for inspecting the action of H0 and H1 on the path constructors
involved.

14



Symmetric Monoidal Smash Products in HoTT Axel Ljungström

References

[Bru18] G. Brunerie. “Computer-generated proofs for the monoidal structure of the smash
product”. Homotopy Type Theory Electronic Seminar Talks. Nov. 2018. url: https:
//www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html.

[Bru16] G. Brunerie. “On the homotopy groups of spheres in homotopy type theory”. PhD
thesis. Université Nice Sophia Antipolis, 2016. url: http://arxiv.org/abs/1606.
05916.

[BLM22] G. Brunerie, A. Ljungström, and A. Mörtberg. “Synthetic Integral Cohomology in
Cubical Agda”. In: 30th EACSL Annual Conference on Computer Science Logic (CSL
2022). Ed. by F. Manea and A. Simpson. Vol. 216. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022, 11:1–11:19. isbn: 978-3-95977-218-1. doi: 10.4230/LIPIcs.
CSL.2022.11. url: https://drops.dagstuhl.de/opus/volltexte/2022/15731.

[Buc+23] U. Buchholtz et al. “Central H-spaces and banded types” (2023). doi: 10.48550/
ARXIV.2301.02636. url: https://arxiv.org/abs/2301.02636.

[CK17] P. Capriotti and N. Kraus. “Univalent Higher Categories via Complete Semi-Segal
Types”. Proceedings of the ACM on Programming Languages 2.POPL (Dec. 2017),
44:1–44:29. issn: 2475-1421. doi: 10.1145/3158132.

[Cav21] E. Cavallo. “Higher Inductive Types and Internal Parametricity for Cubical Type
Theory”. PhD thesis. Carnegie Mellon University, Feb. 2021. url: https : / /

kilthub.cmu.edu/articles/thesis/Higher_Inductive_Types_and_Internal_

Parametricity_for_Cubical_Type_Theory/14555691.

[CH20] E. Cavallo and R. Harper. “Internal Parametricity for Cubical Type Theory”. In:
28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Ed. by M.
Fernández and A. Muscholl. Vol. 152. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2020, 13:1–13:17. isbn: 978-3-95977-132-0. doi: 10.4230/LIPIcs.CSL.2020.13.

[Doo18] F. van Doorn. “On the Formalization of Higher Inductive Types and Synthetic
Homotopy Theory”. PhD thesis. Carnegie Mellon University, May 2018. url: https:
//arxiv.org/abs/1808.10690.

[LM23] A. Ljungström and A. Mörtberg. Formalizing π4(S3) ∼= Z/2Z and Computing a
Brunerie Number in Cubical Agda. 2023. doi: 10.48550/ARXIV.2302.00151. url:
https://arxiv.org/abs/2302.00151.

[UF13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. Institute for Advanced Study: Self-published, 2013. url: https:
//homotopytypetheory.org/book/.

15

https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
http://arxiv.org/abs/1606.05916
http://arxiv.org/abs/1606.05916
https://doi.org/10.4230/LIPIcs.CSL.2022.11
https://doi.org/10.4230/LIPIcs.CSL.2022.11
https://drops.dagstuhl.de/opus/volltexte/2022/15731
https://doi.org/10.48550/ARXIV.2301.02636
https://doi.org/10.48550/ARXIV.2301.02636
https://arxiv.org/abs/2301.02636
https://doi.org/10.1145/3158132
https://kilthub.cmu.edu/articles/thesis/Higher_Inductive_Types_and_Internal_Parametricity_for_Cubical_Type_Theory/14555691
https://kilthub.cmu.edu/articles/thesis/Higher_Inductive_Types_and_Internal_Parametricity_for_Cubical_Type_Theory/14555691
https://kilthub.cmu.edu/articles/thesis/Higher_Inductive_Types_and_Internal_Parametricity_for_Cubical_Type_Theory/14555691
https://doi.org/10.4230/LIPIcs.CSL.2020.13
https://arxiv.org/abs/1808.10690
https://arxiv.org/abs/1808.10690
https://doi.org/10.48550/ARXIV.2302.00151
https://arxiv.org/abs/2302.00151
https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/

	Introduction
	Background
	Symmetric monoidal wild categories
	Smash Products

	Associativity
	The Heuristic
	The Symmetric Monoidal Structure

