
The Steenrod squares via unordered joins
Axel Ljungström

Department of Mathematics
Stockholm University

Email: axel.ljungstrom@math.su.se

David Wärn
Department of Computer Science and Engineering

University of Gothenburg and Chalmers University of Technology
Email: warnd@chalmers.se

Abstract—The Steenrod squares are cohomology operations
with important applications in algebraic topology. While these
operations are well-understood classically, little is known about
them in the setting of homotopy type theory. Although a definition
of the Steenrod squares was put forward by Brunerie (2017),
proofs of their characterising properties have remained elusive.
In this paper, we revisit Brunerie’s definition and provide proofs
of these properties, including stability, Cartan’s formula and the
Adem relations. This is done by studying a higher inductive type
called the unordered join. This approach is inherently synthetic
and, consequently, many of our proofs differ significantly from
their classical counterparts. Along the way, we discuss upshots
and limitations of homotopy type theory as a synthetic language
for homotopy theory. The paper is accompanied by a computer
formalisation in Cubical Agda.

I. INTRODUCTION

Homotopy type theory (HoTT) is an extension of Martin-
Löf type theory based on the idea of treating types as ∞-
groupoids, or spaces. While HoTT only gained attention as
recently as 2012,∞-groupoids themselves are important math-
ematical objects and have long been fruitfully studied using
the many tools of algebraic topology and homotopy theory. A
key question is to what extent these tools can be made to work
with the language of HoTT, and whether HoTT can provide
new insights going beyond classical homotopy theory. By
now, there is an established line of research, dubbed synthetic
homotopy theory, dedicated to answering these questions. The
promises of synthetic homotopy theory include conceptual
clarity, semantic generality (an argument expressed in HoTT
automatically applies in many models, including arbitrary ∞-
topoi [1]), and amenability to computer formalisation, but it
also comes with its own set of limitations.

A fundamental tool in homotopy theory is that of cohomol-
ogy, and a fundamental tool in making sense of cohomology is
that of cohomology operations. These are ways of constructing
new cohomology classes from old ones, and they give the
cohomology of any space a rich structure. The purpose of
this paper is to study an important family of cohomology
operations, the Steenrod squares, in HoTT. Although a good
deal of work has been done setting up the foundations of
cohomology in synthetic homotopy theory, from Eilenberg–
MacLane spaces [2], cohomology groups [3], cup products
[4], [5], and cellular cohomology [6], to Gysin sequences [7]
and spectral sequences [8], the Steenrod squares have so far
only been defined in HoTT in a short text by Brunerie [9].
The Steenrod squares are classically known to satisfy a list

of properties that are not easily read off from their definition
but are important for applications, and these properties have
remained elusive in synthetic homotopy theory. In this work,
we will prove all these properties.

We have computer formalised a large part of the project
(including all key technical results) in Cubical Agda, a proof
assistant implementing a flavour of HoTT called cubical type
theory. We emphasise, however, that this paper is agnostic with
respect to HoTT flavour and is written in the implementation-
agnostic informal style of the HoTT book [10].

Two themes feature prominently in this work. The first
theme is that of constructions which depend on an arbitrary
2-element type [9], [11]. Here, a type is said to be a 2-element
type if it merely is equivalent to the standard 2-element type
2 (i.e. {0, 1}). We denote the type of all 2-element types by
RP∞. By univalence, any construction that depends on an
arbitrary 2-element type (i.e. indexed by RP∞) automatically
respects automorphisms of 2-element types, and in this way
we get a synthetic approach to what is classically known as
equivariant homotopy theory. The second theme is that of
higher inductive types; of particular importance to us are joins
and smash products. The meat of our work consists of studying
the interaction of these two themes: unordered joins and smash
products and their properties.

To set the stage and state the main result of this paper, let us
briefly revisit the work of Brunerie. Brunerie defines the nth
Steenrod square, a map Hm(X,Z/2Z) → Hm+n(X,Z/2Z),
directly on Eilenberg–MacLane spaces: in HoTT, elements of
Hm(X,Z/2Z) are represented by functions X → Km where
Km := K(Z/2Z,m) denotes the mth Eilenberg–MacLane
space of Z/2Z, and so the Steenrod square is given by a map
Sqn : Km → Km+n. This map is defined as a composition:

Km → (RP∞ → K2m)
∼−→ Πi≤2mKi

projm+n−−−−−→ Km+n. (1)

Here, the first map is defined using unordered smash products,
and the second equivalence comes from the Thom isomor-
phism theorem [7, Section 6.1]. While this construction is
elegant, it has turned out to be difficult to analyse. In particular,
one would like to know that the Steenrod squares satisfy
the properties listed below; proving these is the primary
contribution of this paper.

Theorem 1 (The Steenrod squares, axiomatically). There is
a set of pointed maps Sqnm : Km →pt Km+n for m,n ≥ 0,

https://github.com/caripoulet974/cubical/blob/master/Cubical/Papers/Steenrod.agda

called the Steenrod squares, usually written Sqn leaving the
m implicit, which satisfy the following identities.

(I1) Sq0(x) = x

(I2) Sqnm(x) = 0 if n > m

(I3) Sqnn(x) = x ⌣ x

(C) Sqn(x⌣y) =
∑

i+j=n

Sqi(x)⌣Sqj(y) (the Cartan formula)

In addition, the squares are stable and satisfy the Adem
relations:

(Ω) The nth square Sqnm : Km →pt Km+n is also given by

Km
∼−→ Ω(Km+1)

Ω(Sqnm+1)−−−−−−→ Ω(K(m+1)+n)
∼−→ Km+n.

(A) The Adem relations are satisfied: for n < 2k, we have

Sqn ◦ Sqk =
∑⌊n/2⌋

i=0

(
k−i−1
n−2i

)
Sqn+k−i ◦ Sqi.

In (I3) and (C) above, the symbol ⌣ denotes the cup product
map Km →pt Kn →pt Km+n obtained from the ring structure
on Z/2Z.

A. Contributions and outline

The main contribution of this paper is a proof of the
properties of Steenrod squares listed in Theorem 1. Before
discussing Steenrod squares, we discuss, in Section II, some
background material about RP∞ and unordered pairs. Then
in Section III, we present a variant of Brunerie’s definition
of the Steenrod squares, via what we call unordered cup
products. We prove all the properties of Steenrod squares
listed in Theorem 1, modulo a technicality dealt with in the
following section. Section IV concerns properties of unordered
HITs and constitutes the technical core of this paper. In
Section V we discuss how a good theory of E∞-monoids in
type theory would have significantly simplified our work. In
Section VI we showcase an application of Steenrod squares
toward analysing π4(S3). Finally, in Section VII, we mention
some open questions.

B. Notation and basic definitions

Let us briefly introduce some notation while also recalling
some basic constructions from HoTT which will be used in
the paper. The reader familiar with HoTT should be able to
safely skim or even skip this part.

a) Pi- and sigma-types: Let B : A→ U be a dependent
type – here U denotes the universe of types (at some implicit
universe level). We often use the notation (a : A)→ B a and
(a : A) × B a for Πa:AB(a) and Σa:AB(a) respectively. We
may sometimes write BA for the non-dependent function type
A→ B.

b) Equality: We write x = y for the type of paths from
x to y. We use x := y for definitions. The constant path
(reflexivity) is denoted by reflx : x = x. We use path induction
to refer to the usual induction principle for identity types in
MLTT.

c) Equivalences and univalence: A type X is said to be
contractible if there is some x : X s.t. for all x′ : X , we have
that x′ = x. Given a map f : A→ B we define its fibre over
some point b : B by fibf (b) := (a : A) × (f(a) = b). We
say that f is an equivalence if fibf (b) is contractible for each
b : B. In this case, we simply write f : A ≃ B and leave the
contractibility proof implicit.

There is a canonical map coe : X = Y → X ≃ Y defined
by path induction, sending reflX to the identity idX : X ≃ X .
The univalence axiom says that coe itself is an equivalence.
In particular, this means that if two types are equivalent, then
they are equal.

d) Pointed structures: A pointed type (A, ptA), i.e. a type
A equipped with a basepoint ptA : A, will often simply be
written A, i.e. with the basepoint left implicit. We use the
same convention for pointed functions and simply write f :
A→pt B to mean a pair (f, ptf) where f : A→ B is a plain
function and ptf : f(ptA) = ptB is a proof that f is basepoint
preserving.

e) Loop spaces: We define the loop space of a pointed
type A by Ω(A) := (ptA = ptA). This construction is itself
pointed by reflptA and can thus be iterated by inductively
defining Ωn+1(A) := Ωn(Ω(A)).

f) H-levels: We say that a type A is a (−2)-type if it
is contractible and, inductively, that it is an n-type if x = y
is an (n − 1)-type for all x, y : A. Apart from (−2)-types,
special names are also given to (−1)-types and 0-types; these
are, respectively, called propositions and sets.

g) Truncations: We write ∥A∥n for the n-truncation of
A, the canonical way of forcing A to become an n-type. This
is a type equipped with an inclusion of points |−| : A→ ∥A∥n
whose induction principle say that the map ((x : ∥A∥n) →
B(x)) → ((a : A) → B |a|) is an equivalence whenever
B : ∥A∥n → U is a family of n-types. It is implemented
using a recursive HIT [10, Section 7.3], but we do not need
the implementation details here.

h) Connectedness: We say that a type is n-connected if
∥A∥n is contractible. We say that a function f : A → B is
n-connected if all of its fibres are n-connected.

i) Pushouts: Given a span Y
f←− X

g−→ Z, we define
its (homotopy) pushout, Y ⊔X Z, to be the HIT generated by
two point constructors inl : Y → Y ⊔X Z and inr : Z →
Y ⊔X Z, as well as one higher constructor push : (x : X)→
inl(f x) = inr(g, x). An important special case of pushouts is
the suspension of a type X , written ΣX , which we define by
ΣX := 1 ⊔X 1. Another important construction is the smash
product of two pointed types, denoted X ∧ Y . We define it
here as the pushout (1+1)⊔X+Y X×Y . The join of types is
another example of a pushout which plays a key role for us.
The join of X ∗ Y of types X,Y is defined to be the pushout
X ⊔X×Y Y of the span X

fst←− X × Y snd−−→ Y . We take all
pushouts to be pointed, whenever possible, by inl(ptX).

j) Eilenberg–MacLane spaces and cohomology: Given
an abelian group G and a natural number n, we denote by
K(G,n) the nth Eilenberg–MacLane space, or delooping,

2

of G [2]. It is characterised as the unique pointed (n − 1)-
connected n-type whose nth loop space ΩnK(G,n) is iso-
morphic, as a group, to G. It follows that we have pointed
equivalences σn : K(G,n) ≃pt ΩK(G,n + 1). In this way
it is clear that K(G,n) has an associative and commuta-
tive H-space structure (corresponding to path composition
in ΩK(G,n + 1)), denoted + : K(G,n) → K(G,n) →
K(G,n).

If moreover R is a ring, then we have a cup product ⌣:
K(R,n) →pt K(R,m) →pt K(R,n + m) which is graded-
commutative and associative. The defining property of the cup
product is that in degree (0, 0), i.e. as a map K(R, 0) →
K(R, 0) → K(R, 0), it simply corresponds to multiplication
in R, and that the cup product respects looping in the following
sense. For a fixed a : Kn, consider the pointed map given by
cupping with a, i.e. (−) ⌣m a : Km →pt Km+n. We have
Ω((−)⌣m+1 a) ◦σm = σm+n ◦ ((−)⌣m a). This is proved
in detail in [5, Lemma 29].

The nth cohomology group of a type X with coeffi-
cients in an abelian group G is given by Hn(X,G) :=
∥X → K(G,n)∥0. The types H•(X,G) are abelian groups by
pointwise addition in K(G,n), and moreover form a graded
ring if G has the structure of a ring.

II. UNORDERED PAIRS AND COMMUTATIVITY
STRUCTURES

One of the main themes in this paper, crucial for the
treatment of Steenrod squares, is that of constructions that
depend on 2-element type. Recall that we write 2 for the
standard 2-element type, with two distinct elements 0 and 1.
A general type X is said to be a 2-element type if we have
∥X ≃ 2∥. Thus any 2-element type is merely equivalent to 2,
but it has no preferred enumeration. Recall also that we write
RP∞ for the type of all 2-element types, or more explicitly

RP∞ := (X : U)× ∥X ≃ 2∥.

We treat RP∞ as a pointed type with basepoint (2, |id2|).
Buchholtz and Rijke [12] have shown that RP∞ is the
sequential colimit of the finite-dimensional real projective
spaces RPn, hence the notation. Given a term X : RP∞

we will conflate X with its underlying type fst(X) : U .
For us, RP∞ is significant because it captures the idea of

commutativity in a synthetic and homotopy coherent manner.
Consider, for example, the symmetry of cartesian products,
A0 ×A1 ≃ A1 ×A0. This can be explained as follows using
RP∞. The binary cartesian product can be seen as a 2-indexed
dependent product, Πi:2A(i) for A : 2→ U . More generally,
for any X : RP∞ and A : X → U , we can consider the
product Πi:XA(i). Clearly this reduces to the binary cartesian
product if X is 2. Now 2 has a self-equivalence ¬ : 2 →
2 which swaps 0 and 1, and by univalence this induces a
loop pt = pt of the basepoint of RP∞. By action on paths,
this induces an equivalence Πi:2A(i) ≃ Πi:2A(¬i) for any
A : 2 → U , which reduces to commutativity of the cartesian
product.

In general, our usage of RP∞ follows the same pattern. The
point is to first generalise some construction which normally
would operate on ordered pairs – like the cartesian product
A0 × A1 computed from the pair (A0, A1) : U × U – to
a construction that depends on an ‘unordered pair’. By an
unordered pair (of elements of A), we mean a map a : X → A
where X : RP∞ and A is some arbitrary type. We often
write AX to emphasise that it should be thought of as a
generalisation of A2 – one might also say that AX is a
‘twisted’ version of A2.

The upshot is that whenever we write down a construction
indexed by RP∞, we automatically gain information about
the symmetry of said construction. In the case of the cartesian
product, this gives rise to the equivalence swapA0,A1

: A0 ×
A1 ≃ A1 × A0, but this is not all. The fact that the self-
equivalence ¬ : 2 ≃ 2 is involutive tells us that swapA1,A0

◦
swapA0,A1

= id. This is only the start of an infinite tower of
coherences, associated with the cell decomposition of RP∞.
The upshot of the synthetic approach is that we do not need
to think explicitly about these coherences.

A. Basic facts about RP∞

Let us now recall some elementary lemmas and construc-
tions regarding RP∞ and unordered pairs. The following
lemma is a special case of a result due to Kraus [13, Proposi-
tion 8.1.2.] and the remaining ones can be found in Buchholtz
and Rijke [12].

Lemma 2. For P : RP∞ → U , the type of functions (X :
RP∞)→ P (X) is equivalent to
(a) P (2) if P is proposition-valued.
(b) (t : P (2))× (P (¬)(t) = t) if P is set-valued.

Lemma 3. All types X : RP∞ are sets.

Lemma 4. For any X : RP∞, there is an involution ¬ : X ≃
X agreeing with the usual involution of 2 whenever X := 2.

Although this lemma/definition is well known, its proof
illustrates a useful technique for defining operations over
RP∞, so we choose to include it.

Proof/construction of Lemma 4. For any X : RP∞, let
P (X) := (e : X → X)× ((e ◦ e = id)× e ̸= idX). We claim
that this type is contractible. Since this claim is a proposition,
it suffices, by Lemma 2, to show that P (2) is contractible.
This is trivial, as P (2) is the type of non-identity involutions
on 2 – a type uniquely pointed by 2-involution. So, P (X)
is contractible for any X : RP∞ and we define ¬ to be the
centre of contraction.

Using Lemma 4, we may construct, for any X : RP∞ and
x : X , an equivalence ex : 2 ≃ X defined by setting

ex(0) := x ex(1) := ¬x.

To prove that this indeed is an equivalence, we note that this
statement is a proposition and thus, by Lemma 2, it suffices
to do so when X is 2. By case-splitting on x : 2, we see that
ex is the identity when x = 0 and involution when x = 1. In

3

particular, it is an equivalence. In fact, not only is ex always
an equivalence – the map e(−) is one itself:

Lemma 5. For any X : RP∞, the map e(−) : X → (2 ≃ X)
is an equivalence.

Proof. The statement is a proposition, and thus it suffices to
show it when X = 2. In this case, e(−) is the map sending
0 to the identity on 2 and sending 1 to the involution. As
these are precisely the (two) 2-automorphisms, e(−) is clearly
invertible and thus an equivalence.

By univalence, Lemma 5 gives a characterisation of the
based path types on RP∞: it tells us that any based path
type (ptRP∞ = X) is equivalent to the ‘point’ X itself. In
particular, we get that unordered pairs (AX) really corre-
sponds to fibrations over the based path types of RP∞, i.e.
(ptRP∞ = X → A). This gives us a new way of interpreting
path induction for RP∞:

Lemma 6. Let A : (X : RP∞)×X → U . The map

(((X,x) : (. . .))→ A(X,x))
f 7→f(2,0)−−−−−−→ A(2, 0)

is an equivalence.

Another way of understanding this is by the following
induction rule for functions defined over X : RP∞.

Lemma 7. Let X : RP∞, B : X → U and x : X . Any pair
of points b0 : B(x) and b1 : B(¬x) induces a function

Elimx7→b0
¬x 7→b1

: (x : X)→ B(x)

satisfying Elimx 7→b0
¬x 7→b1

(x) = b0 and Elimx 7→b0
¬x7→b1

(¬x) = b1. In

fact, the map B(x)×B(¬x)
(b0,b1)7→Elim

x 7→b0
¬x7→b1−−−−−−−−−−−−→ Πx:XB(x) is

an equivalence.

B. Commutativity Structures

As discussed, the significance of unordered pairs is that
they allow us to capture the idea of an operation being
homotopy commutative in an ‘infinitely coherent’ manner.
This is captured by the following definition.

Definition 8 (Brunerie [9]). A commutativity structure for a
binary operation ⋄ : A × A → B is a family of maps ⋄X :
AX → B for each X : RP∞ agreeing with ⋄ if X = 2.

By letting A and B be Eilenberg-MacLane spaces in the
above definition, a commutativity structure ⋄(−) will allow
us to produce cohomology classes in H∗(RP∞). Brunerie’s
construction of the Steenrod squares boils down to showing
that the cup product ⌣: Kn×Kn → K2n has a commutativity
structure. Before we get there, however, let us give the
following example in order to illustrate the general idea of
how commutativity structures can be constructed. In fact, the
following construction will be useful in its own right.

Example 9. For any commutative monoid (M,+, 0), addition
+ :M ×M →M has a commutativity structure. Since M is
a monoid, it is a set and thus the type of maps MX →M is

a set for any X . We will define the commutativity structure,
denoted by Σ :MX →M for X : RP∞, using Lemma 2(b).
For X := 2, we define Σf := f(0) + f(1). We then need to
check that this definition is invariant under 2-inversion. This
corresponds to checking that f(0)+f(1) = f(1)+f(0) which
of course follows from commutativity of M .

The construction in Example 9 crucially relied on M being
a set; when constructing commutativity structures in general,
there are not that many other methods than this at hand.
Fortunately, this argument can sometimes still be used in cases
when the h-level of the type of commutativity structures is not
zero:

Example 10. Addition on Eilenberg–MacLane spaces + :
Kn×Kn → Kn has a commutativity structure. To see why, we
consider the family of dependent types PX : (KX

n → Kn)→
U defined by PX(f) := (f(λx .0) = 0). We have

(f : Kn ×Kn → Kn)× (P2(f)) = (Kn ×Kn →pt Kn)

which is a set [14, Corollary 9]. This means that Lemma 2(b)
applies. It thus suffices to provide an element of P2(+) and
check that this choice is invariant w.r.t. involution of 2. This
boils down to verifying the commutativity of +.

This idea of defining a predicate over the function type of
interest which forces it to become a set is present also in
Brunerie’s original definition of a commutativity structure for
the cup product. Although he does not state it exactly this way,
Brunerie implicitly considers the following predicate.

Definition 11. Let X : RP∞, A : X → Upt and B : Upt,
and f : (

∏
x:X A(X)) → B. We define isBiHomX(f) : U to

be the following type expressing that f is ‘pointed in each
argument’:

(f(λx . pt) = pt)× (pts : BX)

×

((
a :
∏
x:X

A(x)

)
(x : X)→ (a(x) = pt)→ f(a) = pts(x)

)

Let BiHomX(A,B) :=(f :
∏

x:X A(x)→ B)×isBiHomX(f).

A straightforward rewriting shows that, for any proof of
isBiHomX(f), its pts component is constantly pt : B, and we
have

(f : A0 ×A1 → B)× isBiHom2(f) ≃ (A0 ∧A1 →pt B).

By setting A(x) = Kn and B = K2n in Definition 11,
isBiHomX is a predicate on the function type KX

n → K2n.
Let us construct such a function. The key observation is that
the type of such functions is equivalent to Kn ∧Kn →pt K2n

whenever X = 2. This turns out to be a set [14, Corollary
9], and thus the type of such function is a set for any
X : RP∞. Like in Examples 9 and 10, it is enough to give the
construction when X = 2 and check that it is commutative.
Since the cup with coefficients mod 2 is commutative, it has
a commutativity structure.

4

This concludes (our take on) Brunerie’s definition of the
commutativity structure on the cup product. While it is cer-
tainly sufficient for constructing the Steenrod squares, it has
turned out to be rather hard to reason about. One simple but
crucial reason for this is that Brunerie’s definition does not
quite capture a key fact about the cup product, namely that
it is graded. The main issue we have is that our notion of a
commutativity structure does not allow for dependent types.
To remedy this, we propose the following definition.

Definition 12. Let A : I → U be a family of types where I is
a commutative monoid (e.g. I = N). A graded commutativity
structure for a graded operation ⋄ : Ai×Aj → Ai+j is a family
of maps ⋄X,n : (Πx:XAn(x))→ AΣn for each X : RP∞ and
n : X → I , which reduces to ⋄ for X := 2. We remind the
reader of the definition of Σn from Example 9.

Remark 13. Since we work modulo 2 throughout, we have no
reason to worry about the signs that normally show up when
discussing graded commutativity of e.g the cup product, but
let us make a comment about how they can be dealt with. For
a group G and a finite type n of n elements, one can define a
pointed type K(G,n), which is like K(G,n) but with a ‘twist’
relating odd permutations of n with the involution of K(G,n)
given by negation. If G then is a commutative ring, the corre-
sponding graded commutativity structure on K(G,−) would
be given by maps Πx:XK(G,n(x))→ K(G,

∑
x:X n(x)) for

X : RP∞ and n : X → U a family of finite types. The key
here is to index not by N but by the type of finite sets, or some
other higher type which records information about twists.

Our construction of the commutativity structure on the cup
product can be restated, word by word, to equip it with a
graded commutativity structure. This slight generalisation of
Brunerie’s definition will be the one used in this paper. For
this reason, let us finish this section by giving it a name.

Definition 14. The cup product has a graded commutativity
structure which we will refer to as the unordered cup prod-
uct. For X : RP∞, n : X → N and f : (x : X)→ Kn(x), we
denote it by ⌣x:X f(x) : KΣn.

III. THE STEENROD SQUARES

We are now well-prepared to define the Steenrod squares.
We follow Brunerie’s approach, as laid out in (1). That is, we
need to define two maps: one of type Km → (RP∞ → K2m)
and one (equivalence) of type (RP∞ → K2m)

∼−→
∏

i≤2mKi.
Let us start with the first map. Suppose we are given a : Km

and X : RP∞. We let n : X → N and â : (x : X) → Kn(x)

be the constant functions n(x) := m and â(x) := a. We may
now define aX : K2m by

aX :=⌣
x:X

â(x). (2)

The notation is meant to suggest that we think of aX as the
cup product of X-many copies of a; traditionally, this may
also be written as S(a,X).

The second map is given by the inverse equivalence in the
following lemma.

Lemma 15. For n : N, we have an equivalence

Gysn :
∏
i≤n

Ki ≃ (RP∞ → Kn)

Gysn(b0, . . . , bn) := X 7→
n∑

i=0

bi ⌣ t(X)n−i.

Here, t denotes the unique pointed equivalence RP∞ ∼−→pt
K1, and t(X)n−i denotes the iterated cup product of t(X)
with itself. One can think of Lemma 15 as describing the mod
2 cohomology of RP∞, but more directly it says that every
map RP∞ → Kn has a unique ‘polynomial’ representation.
Before proving Lemma 15, we first have to state two simpler
lemmas.

Lemma 16. For n : N, we have an equivalence

(RP∞ → Kn) ≃ (RP∞ →pt Kn+1)

f 7→ X 7→ t(X)⌣ f(X)

Lemma 16 is proved using the Thom isomorphism [7,
Section 6.1]. For details, see [5, Section 5.5].

Lemma 17. For any invertible H-space B and pointed type
A, we have an equivalence

B × (A→pt B) ≃ A→ B

(b, f) 7→ a 7→ b+ f(a)

Proof. We have

B × (A→pt B) ≃ (b : B)× (A→pt (B, b))

≃ (f : A→ B)× (b : B)× (f(a) = b)

≃ (A→ B)

where the first step comes from the fact that B is an invertible
H-space (and hence homogeneous) and the second from the
contractibility of singletons. This equivalence agrees with the
proposed one by construction.

We are now ready to prove Lemma 15.

Proof of Lemma 15. By induction. For n = 0, this is simply
the statement that any map RP∞ → K0 is constant, which fol-
lows from connectedness of RP∞. Now, suppose the lemma
holds for some n ≥ 0. Then

Πi≤n+1Ki ≃ Kn+1 ×Πi≤nKi

≃ Kn+1 × (RP∞ → Kn)

≃ Kn+1 × (RP∞ →pt Kn+1)

≃ RP∞ → Kn+1.

Here, the second line is by the inductive hypothesis, the third
by Lemma 16, and the final line is by Lemma 17. It is direct
to see that the forward composite is the desired one.

Finally, we are ready to define the Steenrod squares.

5

Definition 18 (Steenrod squares). We define the total square
Ŝq : Km →

∏
i≤2mKi by Ŝq(a) := Gys−1

2m(a(−)).We define
the nth Steenrod square Sqn : Km → Km+n by

Sqn(a) :=

{
projm+n(Ŝq(a)) if n ≤ m
0 otherwise

Unpacking the definition, we get the following character-
isation of Sqn(a) for a given a : Km: they are the unique
collection of terms such that for every X : RP∞ we have1

aX =

m∑
i=0

Sqm(a)⌣ t(X)m−i. (3)

Note that (I2) holds by construction with this definition of
Sqn.

A. Proving the main theorem

Now that we have a definition of the Steenrod squares
(following Brunerie), let us, in this section, work our way
towards a proof of Theorem 1. The idea is to use Equation (3)
to reduce properties of Sqn to properties of (−)X , and hence
of the unordered cup product. The following is a simple
example.

Lemma 19. The Steenrod squares are pointed, i.e. Sqn(0) =
0.

Proof. We have 0X = 0 for any X : RP∞ since the unordered
cup product is a bihom by construction. Thus Equation (3)
gives 0 =

∑n
i=0 Sq

n(a) ⌣ t(X)n−i for all X : RP∞. By
Lemma 15, we must have Sqn(a) = 0 for all n.

Perhaps more interestingly, the Cartan formula is equivalent
to the following innocuous equation:

(a ⌣ b)X = aX ⌣ bX . (4)

We will prove the above equation via the following generalisa-
tion, which can be thought of as a type of Fubini interchange
law and also will give rise to the Adem relations.

Theorem 20. For any X,Y : RP∞, n : X × Y → N and
f :
∏

x:X

∏
y:Y Kn(x,y), we have

⌣
x:X
⌣
y:Y

f(x, y) =⌣
y:Y
⌣
x:X

f(x, y).

While easy to state, proving Theorem 20 is far more difficult
than anything we have done so far. Its proof, which we assume
for now but which will be discussed at length later in the paper,
necessitates a development of the theory of unordered joins
and constitutes the technical core of this paper. Before we are
faced with reality, let us reap its fruits prematurely and prove
the characterising properties of the Steenrod squares laid out
in Theorem 1.

Proposition 21. The Steenrod squares satisfy the Cartan
formula (C).

1Formally, we should include terms i from 0 to 2m in the equation. But
the corresponding maps Sqn : Km → Km+n with n < 0 are zero for
connectedness reasons; they are pointed by Lemma 19.

Proof. Consider Theorem 20 in these case where Y is 2, and
n and f depend only their second arguments, so that they are
given simply by i, j : N and a : Ki, b : Kj . In this case, the 2-
indexed ‘unordered’ cup product reduces to the ordinary cup
product, and the X-indexed cup product reduces to (−)X , so
that we end up with Equation (4), (a ⌣ b)X = aX ⌣ bX .
Combined with Equation (3), this gives the following:

i+j∑
k=0

Sqk(a ⌣ b)⌣ t(X)i+j−k

=

(
i∑

l=0

Sql(a)⌣ t(X)i−l

)
⌣

(
h∑

m=0

Sqm(b)⌣ t(X)j−m

)

=

i∑
l=0

j∑
m=0

Sql(a)⌣ Sqm(b)⌣ t(X)i+j−l−m.

Since, for given a, b, the above identity holds in K2(i+j)

for all X : RP∞, we may by Lemma 15 formally identify
coefficients of the polynomials. This concludes the proof.

Proposition 22. The Steenrod squares satisfy (I3): for a : Kn,
we have Sqn(a) = a ⌣ a.

Proof. Taking X to be 2 in Equation (3), we have t(X) = 0
and so only one term in the sum remains: a2 = Sqn(a). We
have a2 = a2 since the unordered cup product generalises the
ordinary cup product. This concludes the proof.

An important fact about Steenrod squares not listed in The-
orem 1 is that they are additive: Sqn(a+b) = Sqn(a)+Sqn(b).
This is a consequence of (Ω), essentially because the action
of any function on paths respects path composition. But there
is also a more direct proof.

Lemma 23. The Steenrod squares are additive: for a, b : Km

we have Sqn(a+ b) = Sqn(a) + Sqn(b).

Proof. By Equation (3), it suffices to prove that (a + b)X =
aX + bX . In fact, one can show a stronger statement, namely
that (−)X : Km → K2m has a unique delooping. Since this is
a proposition, we may suppose that X is 2, i.e. it suffices to
show that (−)2 : Km → K2m has a unique delooping. By [15,
Corollary 12], the delooping is unique if it exists, and it exists
if and only if (a+ b)2 = a2 + b2. This holds by distributivity
and commutativity since we are working mod 2.

Remark 24. Related to Lemma 23, we remark that an
alternative, simpler definition of Sqn is possible. The stability
axiom Theorem 1 tells us that the map Sqn : Km →pt Km+n

should be a delooping of Sqn : Km−1 →pt Km+n−1. By
[15, Corollary 12] and the fact that (a + b)2 = a2 + b2,
the delooping exists and is unique so we could take this
as a recursive definition of Sqn, starting from the definition
of Sqn : Kn → K2n as x 7→ x ⌣ x. In this way, one
would immediately get a stable cohomology operation, which
is sufficient for some purposes, but this definition seems to
give no insight toward proving the Cartan formula or Adem
relations.

6

Before we continue with the remaining axioms, we will
need the following lemma which will allow a computation of
Sq0 on K1.

Lemma 25. For X : RP∞ we have t(X)X = 0.

Proof. We have to show that ⌣x:X t(X) = 0. Since the
unordered cup product has the structure of a bihom, it suffices
to prove that t(X) = 0 in K1 for all x : X . This is direct;
given x : X we indeed have X ≃ 2 so that t(X) = 0.

The above proof may seem curious: we argue that t(X)X =
0X , not by showing that t(X) = 0, but by showing t(X) = 0
for all x : X .

Lemma 26. For x : K1, we have Sq0(x) = x.

Proof. We have 0 = t(X)X = Sq0(t(X))t(X) + Sq1(t(X))
by Equation (3). Here Sq0 is a pointed map K1 →pt K1 so
it is given by multiplication by some element c of Z/2Z.
We have that Sq1(t(X)) = t(X)2 by Proposition 22. Thus
0 = c t(X)2 + t(X)2. By formally identifying coefficients of
polynomials, we get c = 1, so that Sq0 is the identity map, as
needed.

In order to prove the stability axiom (Ω), it will be helpful
to represent loop spaces in terms of maps from S1. In our
setting, this is mediated by cup products and the pointed map
e : S1 →pt K1 which sends the generating loop of S1 to the
non-trivial loop of K1, i.e. σ0(1), according to the following
lemma.

Lemma 27. With e : S1 →pt K1 as above and n : N, the com-
posite of σn : Kn → ΩKn+1 with the canonical equivalence
ΩKn+1 → (S1 →pt Kn+1) is given by a 7→ (x 7→ e(x)⌣ a).

Proof. Given a : Kn, it suffices to show that the action of
((−) ⌣ a) ◦ e : S1 →pt Kn+1 on the generating loop, i.e.
loop : ΩS1, is given by σn(a) : ΩKn+1. We have

Ω(((−)⌣ a) ◦ e)(loop) = Ω((−)⌣ a)(Ω(e)(loop))

= Ω((−)⌣ a)(σ0(1))

= σn(1⌣ a)

= σn(a)

where, in the second-to-last step, we use the fact that the cup
product respects looping.

Proposition 28. The Steenrod squares satisfy the stability
axiom (Ω).

Proof. Let Sqnm denote the Steenrod square Km → Km+n,
let σm : Kk

∼−→pt ΩKm+1 and let τm denote the canonical

equivalence ΩKm
∼−→ (S1 →pt Km). Given m,n : N, we wish

to show that square (A) in the following diagram commutes.

Km Km+n

ΩKm+1 ΩKm+n+1

(S1 →pt Km+1) (S1 →pt Km+n+1)

Sqnm

σm σm+n

ΩSqnm+1

τm+1 τm+n+1

Sqnm+1◦(−)

(A)

(B)

To this end, we note that it is easy to see that square
(B) commutes and that all vertical maps are equivalences.
Hence, it suffices to show that the outer square commutes. By
Lemma 27, the vertical composites are given by a 7→ (x 7→
e(x)⌣ a). Thus it suffices to show that for every a : Km and
x : S1, we have

Sqn(e(x)⌣ a) = e(x)⌣ Sqn(a).

By the Cartan formula, the left hand side computes to
Sq0(e(x))⌣ Sqn(a)+Sq1(e(x))⌣ Sqn−1(a). By Lemma 26
we have Sq0(e(x)) = e(x) so it suffices to show that
Sq1(e(x)) = 0, i.e. that e(x)⌣ e(x) = 0.

To see why this holds, one can simply note that the map
x 7→ e(x)⌣ e(x) factors as

S1 ∆−→ S1 ∧ S1 ⌣−→ K1 ∧K1.

The diagonal map ∆ : A→ A ∧A vanishes whenever A is a
suspension (so, in particular when A = S1). This follows by
straightforward suspension induction.

Proposition 29. The Steenrod squares satisfy axiom (I1), i.e.
Sq0 = id.

Proof. The zeroth square lives in the type of pointed functions
Kn →pt Kn – a type which we understand well: looping
(Kn →pt Kn) → (Kn−1 →pt Kn−1) is an equivalence for
each n ≥ 0. Since looping preserves the identity function, it
is thus, by (Ω), enough to show that Sq00 : K0 → K0 is the
identity. By (I3), we have Sq00(x) = x ⌣ x. However, since
K0 := Z/2Z, the cup product here is simply multiplication in
Z/2Z and thus Sq00(x) = x ⌣ x = x.

Proposition 30. The Steenrod squares satisfy the Adem rela-
tions (A).

Proof. Given m : N and a : Km, consider Theorem 20 in the
case where n and f are constantly m and a. In this case, we
have for any X,Y : RP∞ that

(aX)Y = (aY)X .

The idea is now simply to expand each side using Equation (3).
We also make use of Lemma 23, the Cartan formula, and the

7

fact that t(X)Y = t(X)2+ t(X)⌣ t(Y), which follows from
(I3). In this way, we get the following.

(aX)Y =

(∑
i

Sqi(a)⌣ t(X)n−i

)Y

=
∑
i

Sqi(a)Y ⌣ (t(X)2 + t(X)t(Y))n−i

=
∑
i,j,k

(
n− i
k

)
SqjSqi(a)t(Y)2n−j−kt(X)n+k−i

In the same way, one can express (aY)X as a polynomial
in t(X) and t(Y). Since we have (aX)Y = (aY)X , we can
formally identify coefficients in these polynomials, by repeated
application of Lemma 15. The steps required to go from here
to the Adem relations are the same as in the classical case;
see [16, Page 345] for details.

This concludes the proof of Theorem 1. A natural question
to ask after seeing the short and snappy proofs in this section
is whether, perhaps, the setting of HoTT makes working with
cohomology operations like the Steenrod squares ‘easier’ than
in a more traditional setting. Although there are aspects of our
setup here which certainly seem to speak in favour of HoTT,
we wish to use this section to emphasise that a lot of the heavy
lifting is done by Theorem 20 which we have, thus far, only
assumed. Thus, this question entirely hinges on the difficulty
of proving this statement. For this reason, we will now devote
the remainder of the paper to proofs. They are interesting in
their own right, as they force us to develop a fair bit of novel
machinery surrounding unordered joins.

IV. UNORDERED JOINS AND THEIR FUBINI THEOREM

We now set out to prove Theorem 20. This theorem states
that our unordered cup product satisfies a certain ‘Fubini
theorem’. Recall from the definition of the unordered cup
product ⌣X : Πx:XKn(x) → KΣn that it has the structure
of a bihom, i.e. it is pointed in each argument, and that it is
non-trivial. This characterises ⌣X up to contractible choice,
and so anything we prove about ⌣X should come from this
characterisation. In order to prove Theorem 20, we would like
to have a similar characterisation of the iterated cup product

⌣X⌣Y : Πx:XΠy:YKn(x,y) → KΣn.

In other words, we would like to find a way to uniquely
characterise ⌣X⌣Y , that is symmetric in X and Y . Morally,
this characterisation is that ⌣X⌣Y is coherently pointed
in each of its X × Y -many arguments. Thus we are lead
to consider a generalisation of isBiHom to the 4-element
type X × Y . Already defining such a generalisation is rather
complicated; it involves the combinatorics of all non-empty
(decidable) subsets of X × Y and their inclusions. So it will
be helpful to have another perspective on isBiHom. In fact,
Brunerie [9] never considered isBiHom, and instead worked
with its corepresenting object, the unordered smash product:

Definition 31. Let X : RP∞ and A : X → Upt be a family
of pointed types. We define the unordered smash product of
A, denoted

∧
x:X A(x), by the following pushout

(x : X)×A(x)
∏

x:X A(x)

X
∧

x:X A(x)

fst

(x,a) 7→ Elimx 7→a
¬x 7→pt

⌟

We take this type to be pointed by inr(λx .pt).

It is easy to see that isBiHom(f) is equivalent to asking that
f factors through inr : Πx:XA(x)→

∧
x:X A(x) via a pointed

map
∧

x:X A(x)→pt B, and that BiHomX(A,B) is equivalent
to the type of all such pointed maps

∧
x:X A(x) →pt B. In

this way, one can see that ⌣X⌣Y is given by the composite
of the map Πx:XΠyKn(x,y) →

∧
x:X

∧
y:Y Kn(x,y), given by

f 7→ inr (x 7→ inr(y 7→ f(x, y))) with the unique non-trivial
map

∧
x:X

∧
y:Y Kn(x,y) →pt KΣn. What remains to be shown

is that we have a pointed equivalence e :
∧

x:X

∧
y:Y A(x, y) ≃∧

y:Y

∧
x:X A(x, y) such that the following diagram com-

mutes.

Πx:XΠy:YA(x, y) Πy:Y Πx:XA(x, y)

∧
x:X

∧
y:Y A(x, y)

∧
y:Y

∧
x:X A(x, y)

swap

e

Again, this turns out to be rather complicated, and we need
another simplifying device.

Definition 32. Let X : RP∞ and A : X → U . We define the
unordered join of A, denoted ∗x:X A(x), by the following
pushout.

X ×Πx:XA(x) Πx:XA(x)

(x : X)×A(x) ∗x:X A(x)

snd

(x,f) 7→(x,f(x)) ⌟

The following lemma says that the unordered join agrees
with the usual definition of joins when X is 2. Recall that the
usual definition is A0 ∗A1 := A0 ⊔A0×A1 A1.

Lemma 33. Given two types A0 and A1, we have

∗
x:2

Ax ≃ A0 ∗A1.

Proof. By the 3× 3 lemma applied to the following diagram.

A0 ∅ A1

A0 ×A1 ∅ A0 ×A1

A0 ×A1 A0 ×A1 A0 ×A1

fst

id

snd

id

id id

8

The unordered join is relevant for us because isBiHom(f)
is easily seen to be equivalent to

(a : Πx:XA(x))→ ∗
x:X

(a(x) = pt)→ (f(a) = pt).

An equivalent way to phrase this (which we will not use) is
that

∧
x:X A(x) is the cofibre of the projection

(a : Πx:XA(x))×∗
x:X

(a(x) = pt)→ Πx:XA(x)

onto the first component; this map might be called an un-
ordered wedge inclusion.

Given this characterisation of isBiHom(f) in terms of the
unordered join, the proof of Theorem 20 will eventually reduce
to the following lemma.

Lemma 34. For any X,Y : RP∞ and A : X × Y → U , we
have a function

∗
x:X
∗
y:Y

A(x, y)→∗
y:Y
∗
x:X

A(x, y)

Interestingly, we do not need to ask for any properties of this
function, although it is important that we construct a function
as opposed to proving its mere existence. Since the proof of
Lemma 34 is rather technical, we postpone it for the moment
and turn to the main result promised at the beginning of this
section.

Proof of Theorem 20. Suppose we are given X,Y : RP∞,
n : X × Y → N, fixed throughout the proof; we would like
to show that ⌣X⌣Y =⌣Y⌣X . Given f : Πx:XΠy:YKn(x,y),
we claim that we have a map

∗
x:X
∗
y:Y

(f(x, y) = 0)→ (⌣x:X⌣y:Y f(x, y) = 0). (5)

Indeed, we have a map ∗x:X∗y:Y (f(x, y) = 0) →∗x:X (⌣y:Y f(x, y) = 0) by functoriality of the unordered
join together with the fact that ⌣Y is a bihom, and a map
(∗x:X(⌣y:Y f(x, y) = 0)) → (⌣x:X⌣y:Y f(x, y) = 0)
since ⌣X is a bihom.

Now let T be the sigma-type consisting of functions µ :
Πx:XΠy:YKn(x,y) → KΣn together with a proof that for all
f : Πx:XΠy:YKn(x,y), we have∗x:X∗y:Y f(x, y) = pt→
µ(f) = pt. We can construct two elements of T : on the one
hand we have ⌣X⌣Y together with the argument above that
we have a map as in Equation (5). By symmetry and using
Lemma 34, we can similarly construct an element of T whose
first component is ⌣Y⌣X . Now we claim that these two
elements of T are equal; in fact, we claim that there is a
unique identification between them. This will finish the proof,
since if two pairs are equal then so are their first components.

Since our claim is now a proposition, we may assume that
X and Y are both 2. In this case, we have that T is the set
of pointed maps

Kn(0,0) ∧Kn(0,1) ∧Kn(1,0) ∧Kn(1,1) →pt KΣn.

By a version of ‘Cavallo’s trick’ [17, Lemma 15], two pointed
maps out of a smash product into a homogeneous type are

equal if they are equal when restricted to the product, in this
case Πi,j∈{0,1}Kn(i,j). Our two elements of T correspond to
the maps

(a00, a01, a10, a11) 7→ (a00 ⌣ a01)⌣ (a10 ⌣ a11)

and

(a00, a01, a10, a11) 7→ (a00 ⌣ a10)⌣ (a01 ⌣ a11).

Indeed these are equal by commutativity and associativity of
the cup product. This concludes the proof.

A. Proving Lemma 34

No result used in this project has turned out to be quite as
problematic as Lemma 34 – the result is highly technical and
its computer formalisation was only completed after a year’s
worth of failed attempts. While we would be very happy to see
a more conceptual proof of this statement, we are sceptical to
the existence of such a proof. To illustrate why, note that the
pushout describing the unordered join∗x:X A(x) in no way
requires X to be a two-element type – the definition makes
sense for arbitrary X , although in this case we might write
it with an apostrophe ∗′

to remind ourselves that it is no
longer a good generalisation of the usual join. Thus, we may
ask whether it is true, for any two types X and Y and family
A : X × Y → U whether the map

F :∗
x:X

′∗
y:Y

′A(x, y)→∗
y:Y

′∗
x:X

′A(x, y)

exists. This seems difficult (if not impossible) to do in general,
as we cannot prove in general that the domain and codomain
are equivalent. For instance, if we set X = 2 and Y = hProp,
A(0, P) := ¬P and A(1, P) := P , then the LHS becomes
contractible whereas the RHS is equivalent to the suspension
of LEM – a type whose contractibility is independent of HoTT.

So, let us try to define F for X,Y : RP∞. The function
will be described by the following data:

Fl :

(∏
x:X

∗
y:Y

A(x, y)

)
→∗

y:Y
∗
x:X

A(x, y)

Fr : (x : X)×∗
y:Y

A(x, y)→∗
y:Y
∗
x:X

A(x, y)

Flr : (x : X)

(
f :
∏
x:X

∗
y:Y

A(x, y)

)
→ Fl(f) = Fr(x, f(x))

The key problem here is defining Fl – its codomain is a Π-
type and thus does not automatically come equipped with an
elimination rule. Consequently, we need to understand the type∏

x:X∗y:Y A(x, y). Luckily, it turns out that we can describe
this Π-type using a rather involved construction. To give it a
(somewhat) more concise definition, let us define, for any two
types B and C, and family R : B → C → U , the relational
pushout, P (B,C,R) to simply be the pushout of the span
B ← (b : B) × (c : C) × R(b, c) → C. Any pushout B

f−→
D

g−→ C can be written as a relational pushout by setting
R(b, c) := (d : D)× (f(d) = b)× (g(d) = c) (and vice versa).

9

Lemma 35. Let X : RP∞, B,C : X → U , and R :
B(x) × C(x) → U (with x : X an implicit argument). Then∏

x:X P (B(x), C(x), R(x)) is equivalent to the HIT T with
the following constructors.
bb : (

∏
x:X B(x)) → T

cc : (
∏

x:X C(x)) → T

bc : (x : X)×B(x)× C(¬x) → T

rr : (b :
∏

x:X B(x))(c :
∏

x:X C(x))(r :
∏

x:X R(b(x), c(x))) →
bb(b) = cc(c)

br : (x : X)(b :
∏

k:X B(k))(c : C(¬x))(r : R(b(¬x), c)) →
bb(a) = bc(b(x), c)

cr : (x : X)(b : B(x))(c :
∏

k:X C(k))(r : R(b, c(x))) →
bc(b, c(¬x)) = cc(c)

rr′ : (b :
∏

x:X B(x)) (c :
∏

x:X C(x)) →
(r :

∏
x:X R(b(x), c(x))) (x : X) →

rr(b, c, r)=br(x,¬x, b, c(¬x), r(¬x))·cr(x,¬x, b(x), c, r(x))

Proof sketch. It is straightforward to define a map wX : T →
Πx:XP (B(x), C(x), R(x)) by T -induction. By Lemma 2(a),
it is sufficient to show that wX is an equivalence when X =
2. This is somewhat technical but can be done with relative
ease.

If we instantiate the above with B(x) := (y : Y)×A(x, y),
C(x) :=

∏
y:Y A(x, y) and R((y, a), f) := (f(y) = a),

we have P (B(x), C(x), R(x)) ≃ ∗y:Y A(x, y) and thus
Lemma 35 tells us that there is an equivalence w : T ≃∏

x:X∗y:Y A(x, y). Hence, in order to construct Fl, it is
enough to define a map T →∗y:Y ∗x:X A(x, y).

Mapping out of T is, in general, not much easier than
mapping out of

∏
x:X∗y:Y A(x, y): a map out of T must

be defined over Πx:XB(x) and Πx:XC(x) which again forces
us to map out of Π-types. The type Πx:XC(x) is unproblem-
atic: it is simply Πx:XΠy:YA(x, y) and defines an element
of ∗y:Y ∗x:X A(x, y) by simply swapping the arguments.
However,

∏
x:X B(x) := Πx:X((y : Y) × A(x, y)) is more

complicated – where we send an element f of this type
depends on the behaviour of fst◦f : X → Y . Fortunately, we
can understand this type.

Lemma 36. For any X,Y : RP∞, the map ((X ≃ Y)+Y)→
(X → Y) sending equivalences to their underlying functions
and y : Y to the constant map λx . y is an equivalence.

Proof. Since the statement is a proposition, it suffices to show
it when X = Y = 2. In this case, the statement is simply
the trivial observation that any function 2 → 2 is either an
equivalence or constant.

Using Lemma 36, we can replace each occurrence of
Πx:X((y : Y)×A(x, y)) in T with the equivalent type

((e : X ≃ Y)×A(x, e(x))) + ((y : Y)×A(x, y))

which has a more well-behaved elimination principle. After
this rewriting, it is possible to define, by pattern matching, a
map ψX,Y : T → ∗y:Y ∗x:X A(x, y), which allows us to
define Fl = ψX,Y ◦ ϕ, where ϕ is the appropriate instance
of Lemma 35. We then need to define, for each x : X , the

function Fr(x,−) and the homotopy Flr(x,−). In theory, this
is somewhat easier: as we have x : X in context, we may
apply Lemma 6. In practice, we have to deal with a large
number of difficult coherence problems which we completely
sweep under the rug here.

V. JOINS AND E∞-MONOIDS

Much progress in synthetic homotopy type theory is held
back by what is known as the problem of infinite objects [18].
This problem appears in many guises, and is traditionally
explained in terms of semi-simplicial types. In this work
we brush against instances of this problem in many places
where we would like to talk about higher commutative, more
precisely E∞-, monoids.

The idea of E∞-monoids2 is remarkably natural from a
type-theoretic perspective. An E∞-monoid should consist of
a type A and for any finite type X a ‘multiplication’ map

µX : AX → A.

These multiplication maps express that any finite collection
of elements of A can be multiplied, and that their order is
irrelevant in a homotopy coherent sense. The unary multipli-
cation µ1 : A1 → A should be the canonical equivalence.
These multiplication maps are subject to certain coherences,
starting with the following: given a finite type X : U and a
family of finite types Y : U indexed by X , the two maps
A(x:X)×Y (x) → A given respectively by µ(x:X)×Y (x) and

a 7→ µX(x 7→ µY (y 7→ a(x, y)))

are identified. This expresses a kind of generalised associativ-
ity.

This is not a complete definition of E∞-monoids – it is
missing an infinite tower of higher coherences – but we can
get far with just the data above.

For example, we would like to know that the universe of
types U forms an E∞-monoid where the multiplication is
given by unordered join of types. The unordered binary join
would be a special case, and the Fubini map (which really
should be an equivalence) of Lemma 34 – our main technical
result – would be a consequence of generalised associativity,
since µX×Y and µY×X are related by the path X×Y = Y ×X
obtained from univalence. In this way, the technical burden of
this paper would be much lighter if we simply had access to
this E∞-monoid structure!

The problems associated with this appear at three different
levels. At the first level, we cannot even define the whole
infinite tower of E∞-coherences in type theory. This is a well-
known instance of the problem of infinite objects, but is not
so relevant for us. At the second level, it is not clear how to
define the unordered join of a general finite family of types.
We have seen how to do it given a finite family of size 2, and
it is clear how to do it for 3 and 4, but the complexity grows
very quickly, and we run into the problem of infinite objects in
trying to define a general pattern. At the third level, consider

2Usually referred to by the less descriptive term E∞-spaces.

10

what happens when we try to reason about unordered joins of
just a few spaces – for example as in Lemma 34. At this level,
our problems are finitary and in principle surmountable. But
they are also remarkably difficult since we lack a systematic
way to approach these problems. This story can be compared
with that of coherences for the smash product [17].

VI. STEENROD SQUARES AND π4(S3)

The Steenrod squares are not only an esoteric construction:
they have several crucial applications in algebraic topology.
One typical example is the computation of π4(S3), the 4th
homotopy group of the 3-sphere, i.e. ∥S4 →pt S3∥0. Although
the fact that π4(S3) ∼= Z/2Z is well known in HoTT, due to
Brunerie [7], it was shown by Ljungström and Mörtberg [19]
that this can be shown in a very direct way under the assump-
tion that π4(S3) is non-trivial. We can now complete this proof
by giving a new (in HoTT) argument for why π4(S3) does not
vanish. Let h : S3 → S2 be the Hopf map, i.e. the generator
of π3(S2) . If we can show that its suspension Σh : S4 → S3
is non-trivial, we are done. In HoTT, we define CP 2 := Ch to
be the cofibre of h. Since suspensions commute with cofibres,
we get CΣh ≃ ΣCP 2. On the other hand, the cofibre of the
constant pointed map const : S4 → S3 is equivalent to S5∨S3,
i.e. the pushout of the span S5 ← 1→ S3. Thus, we are done
if we can show the following.

Theorem 37. ΣCP 2 ̸≃ S5 ∨ S3

Proof. Both spaces in questions are suspensions, with S5 ∨
S3 ≃ Σ(S4 ∨ S2). We consider the following diagram where
A ∈ {CP 2,S4 ∨ S2} (and where, we remark, all cohomology
groups are equivalent to Z/2Z).

H2(A,Z/2Z) H4(A,Z/2Z)

H3(ΣA,Z/2Z) H5(A,Z/2Z)

(−)2

∼

Sq2

This diagram is an instance of the suspension property for
the Steenrod squares. When A = CP 2, the squaring map
is non-trivial (this was proved in HoTT by Brunerie [7]
using Z-coefficients but the proof works fine also for Z/2Z-
coefficients). When A = S4 ∨ S2, the squaring map is trivial
since wedge sums have trivial cup products. So ΣCP 2 has
non-trivial Sq2 whereas for S5 ∨ S3 it is trivial, and thus we
may conclude that these types cannot be equivalent.

Corollary 38. π4(S3) ̸= 0

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proved important properties of
the Steenrod squares in homotopy type theory, following a
definition of Brunerie. This has necessitated the development
of a substantial theory of unordered HITs, and we hope that
our paper can serve as an illustration of the current state of
synthetic homotopy theory – its power and its limitation.

This work suggests a number of further questions. Regard-
ing Steenrod squares, one would like to know that they gen-
erate all maps K(Z/2Z, n)→ K(Z/2Z,m) in an appropriate
sense. Can this be proved in homotopy type theory? What
about the assertion that the equations listed in Theorem 1
generate all possible relations between the Steenrod squares?

More generally, for any odd prime p there should be an
analogue of the Steenrod square, namely the Steenrod reduced
pth power Pn : K(Z/pZ,m)→pt K(Z/pZ,m+ 2n(p− 1)).
Can this even be studied in homotopy type theory? It is not
clear how to even define it without running into the problem
of infinite objects.

Let us also highlight the problems discussed in Section V.
Is it possible to define the unordered join of a general finite
family of types? And is it possible to prove things like
Lemma 34 more efficiently and systematically?

REFERENCES

[1] M. Shulman. (2019, April) All (∞, 1)-toposes have strict univalent
universes. Preprint. [Online]. Available: https://arxiv.org/abs/1904.07004

[2] D. R. Licata and E. Finster, “Eilenberg-MacLane Spaces in Homotopy
Type Theory,” in Proceedings of the Joint Meeting of the Twenty-
Third EACSL Annual Conference on Computer Science Logic (CSL)
and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), ser. CSL-LICS ’14. New York, NY, USA:
Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2603088.2603153

[3] G. Brunerie, A. Ljungström, and A. Mörtberg, “Synthetic Integral
Cohomology in Cubical Agda,” in 30th EACSL Annual Conference
on Computer Science Logic (CSL 2022), ser. Leibniz International
Proceedings in Informatics (LIPIcs), F. Manea and A. Simpson,
Eds., vol. 216. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022, pp. 11:1–11:19. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2022/15731

[4] T. Lamiaux, A. Ljungström, and A. Mörtberg, “Computing cohomology
rings in cubical agda,” in Proceedings of the 12th ACM SIGPLAN
International Conference on Certified Programs and Proofs, ser. CPP
2023. New York, NY, USA: Association for Computing Machinery,
2023, p. 239–252. [Online]. Available: https://doi.org/10.1145/3573105.
3575677

[5] A. Ljungström and A. Mörtberg, “Computational synthetic cohomology
theory in homotopy type theory,” 2024. [Online]. Available: https:
//arxiv.org/abs/2401.16336

[6] U. Buchholtz and K.-B. Hou Favonia, “Cellular Cohomology in
Homotopy Type Theory,” in Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, ser. LICS ’18.
New York, NY, USA: Association for Computing Machinery, 2018, pp.
521–529. [Online]. Available: https://doi.org/10.1145/3209108.3209188

[7] G. Brunerie, “On the homotopy groups of spheres in homotopy type
theory,” Ph.D. dissertation, Université Nice Sophia Antipolis, 2016.
[Online]. Available: http://arxiv.org/abs/1606.05916

[8] F. van Doorn, “On the Formalization of Higher Inductive Types and
Synthetic Homotopy Theory,” Ph.D. dissertation, Carnegie Mellon
University, May 2018. [Online]. Available: https://arxiv.org/abs/1808.
10690

[9] G. Brunerie, “The steenrod squares in homotopy type theory,”
2016, abstract at 23rd International Conference on Types for
Proofs and Programs (TYPES 2017). [Online]. Available: https:
//types2017.elte.hu/proc.pdf#page=45

[10] The Univalent Foundations Program, Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study: Self-
published, 2013. [Online]. Available: https://homotopytypetheory.org/
book/

[11] U. Buchholtz, “Unordered pairs in homotopy type theory,” 2023,
preprint. [Online]. Available: https://ulrikbuchholtz.dk/pairs.pdf

[12] U. Buchholtz and E. Rijke, “The real projective spaces in homotopy
type theory,” in 2017 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), 2017, pp. 1–8.

11

https://arxiv.org/abs/1904.07004
https://doi.org/10.1145/2603088.2603153
https://drops.dagstuhl.de/opus/volltexte/2022/15731
https://doi.org/10.1145/3573105.3575677
https://doi.org/10.1145/3573105.3575677
https://arxiv.org/abs/2401.16336
https://arxiv.org/abs/2401.16336
https://doi.org/10.1145/3209108.3209188
http://arxiv.org/abs/1606.05916
https://arxiv.org/abs/1808.10690
https://arxiv.org/abs/1808.10690
https://types2017.elte.hu/proc.pdf#page=45
https://types2017.elte.hu/proc.pdf#page=45
https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/
https://ulrikbuchholtz.dk/pairs.pdf

[13] N. Kraus, “Truncation levels in homotopy type theory,” July 2015.
[Online]. Available: https://eprints.nottingham.ac.uk/28986/

[14] U. Buchholtz, F. van Doorn, and E. Rijke, “Higher Groups in
Homotopy Type Theory,” in Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, ser. LICS ’18.
New York, NY, USA: Association for Computing Machinery, 2018, pp.
205–214. [Online]. Available: https://doi.org/10.1145/3209108.3209150

[15] D. Wärn, “Eilenberg–maclane spaces and stabilisation in homotopy type
theory,” Journal of Homotopy and Related Structures, vol. 18, no. 2, pp.
357–368, Sep 2023.

[16] J.-C. Hausmann, Mod two homology and cohomology. Springer, 2014,
vol. 10.

[17] A. Ljungström, “Symmetric monoidal smash products in homotopy type
theory,” Mathematical Structures in Computer Science, p. 1–23, 2024.

[18] U. Buchholtz, Higher Structures in Homotopy Type Theory, 2019, pp.
151–172.

[19] A. Ljungström and A. Mörtberg, “Formalising and computing the
fourth homotopy group of the 3-sphere in cubical agda,” 2024. [Online].
Available: https://arxiv.org/abs/2302.00151

12

https://eprints.nottingham.ac.uk/28986/
https://doi.org/10.1145/3209108.3209150
https://arxiv.org/abs/2302.00151

	Introduction
	Contributions and outline
	Notation and basic definitions

	Unordered pairs and commutativity structures
	Basic facts about RP
	Commutativity Structures

	The Steenrod squares
	Proving the main theorem

	Unordered joins and their Fubini theorem
	Proving lem:fubini

	Joins and E-monoids
	Steenrod squares and 4(S3)
	Conclusions and Future Work
	References

